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1 Introduction
This project is a follow-up on the mini-course Programming with Python - an introduction held by Dr. Vanessa
Knittel at CIMAC-X 2021. It is intended (mainly) for Bachelor and Master students as an introduction to solve
mathematical problems (in particular Ordinary Differential Equations) in Python. The objectives are to get to
know each other and to give you some insights in the role of programming within Applied Mathematics. Of
course, PhD students or lecturers with an interest in the subject are also invited to participate. Note, however,
that we will not be able to issue any certificate, as the project work is mainly self-independent.

If you would like to participate, please send a mail to stefan.frei@uni-konstanz.de before September
10, 2021, indicating your name, university and current status (for example "8th semester Bachelor student in
Mathematics"). We will organize a preliminary (virtual) meeting at beginning of October and be available for
support until February, 2022, where a final meeting is planned.

The project has been part of the lecture Computer usage in Mathematics, which is part of the first- or
second-year Bachelor of Mathematics curriculum at the University Konstanz. Feel free to adjust the exercises
given at the end of this sheet to your interest, for example by adjusting parameters to the situation in Peru,
etc.

2 Models of Mathematical Epidemiology
In this section we will introduce the models. We will start with the SIR model which is the easiest model
available to describe the spread of infectious diseases. We will also shortly discuss the behaviour of the SIR
model. Afterwards we will expand our model to the SEIR model which acknowledges that SARS-COV-2 has
some incubation period. The SEIR model will developed further into the vSEIR model by including the existence
of vaccines. Here we can look at the effect of different vaccination programmes.

2.1 The SIR model
The SIR model splits a total population of N individuals for every time stamp t ≥ 0 into three disjoint groups:

• The susceptible group S(t)

• The infected group I(t)

• The recovered group R(t)

We assume that these groups partition the total population, i.e. S(t) + I(t) +R(t) = N for every t ≥ 0.
Next, we will discuss the way these groups interacts with each other and allow for some flow from one group
into another.

2.1.1 S → I

First we will consider the passage from the susceptible group into the infected group. Let β > 0 be the number
of susceptible persons an infected person can infect in a single unit of time given all contacts are with susceptible
individuals. Obviously β depends on the infectiousness of the disease and the number of contacts a person has
on average.
As not all contacts will be susceptible due to vaccination or prior infection one has to introduce the corrective
factor S(t)

N . Therefore a single infected individual will infect β S(t)
N additional persons per unit of time so the
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total flow from S to I is given by

S′(t) = −βS(t)
N

I(t)

I ′(t) = β
S(t)
N

I(t) + . . .

In the next section we will discuss the flow from I to R so the rate of change of I is not completely known yet.

2.1.2 I → R

Infected persons will not stay infected forever and will transition into the recovered group. For the SIR model
we assume that every unit of time a proportion γ ∈ (0, 1] of the infected individuals recover. This yields

R′(t) = γI(t)

For the change of I(t) we arrive at

I ′(t) = β
S(t)
N

I(t)− γI(t)

γ coheres with the average duration of an infection tinf:

γ = t−1
inf

2.1.3 Assembly of the model

We obtain a system of ordinary differential equations:

S′(t) = −βS(t)
N

I(t) (1)

I ′(t) = β
S(t)
N

I(t)− γI(t) (2)

R′(t) = γI(t)

This model implies ∂t (S(t) + I(t) +R(t)) = 0 so the total population stays constant. Therefore R(t) =
N − S(t)− I(t) holds and one can omit R in this system of ODEs.
Furthermore one can discuss whether β and γ change with time. As γ corresponds to the average duration
of the disease and is therefore only dependent on the genetic make-up of the virus one can assume that γ is
constant.
As β depends on the infectiousness and on the number of average contacts this parameter will change over time,
e.g. due to lockdowns. In order to model measures to reduce contact we will split β(t) into two parameters
β(t) = β0 (1− k(t)) where β0 corresponds to the infectiousness of the disease without any counter measures and
k(t) describes the reduction of contacts.

2.1.4 Normalization

In order to simplify the model we will normalize S and I:

s(t) : = S(t)
N

i(t) : = I(t)
N

By combining these definitions with (1) and (2) we obtain

s′(t) = −βs(t)i(t) (3)
i′(t) = βs(t)i(t)− γi(t) (4)

In order to ensure a unique solution we have to give initial values s0, i0 ∈ [0, 1] with s0 + i0 = 1.
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2.1.5 Behaviour of the model

Finally we will outline the behaviour of the system of ODEs given in (3) and (4).

Theorem 2.1
Let (s, i) be a solution to (3) and (4) with initial values i0, s0. Let σ0 := βtinf.
If σ0s0 ≤ 1 holds then i is monotonically decreasing and limt→∞ i(t) = 0.
If σ0s0 > 1 then i is monotonically increasing until i reaches the value

imax = i0 + s0 −
1 + ln(σ0s0)

σ0

After reaching this threshold i will be decreasing monotonically.

Proof. [3, Theorem 2.2]

2.2 The SEIR model
The SIR model assumes that a newly infected person is instantly contagious which is not true. In order to fix
this we introduce a new class, the exposed group E where members are freshly infected but not yet contagious
individuals. This class will be an intermediate step when transitioning from S to I.

2.2.1 The adjusted flows

For the number of newly infected people the term β S(t)
N I(t) still seems reasonable but now the newly infected

individuals are placed in E. This yields

S′(t) = −βS(t)
N

I(t)

E′(t) = β
S(t)
N

I(t)− . . .

We introduce another parameter texp that describes the average latent period. The transitions E → I and
I → R are similar. Setting κ := 1

texp
we have

E′(t) = β
S(t)
N

I(t)− κE(t)

I ′(t) = κE(t)− γI(t)
R′(t) = γI(t)

Again we can deduce that S(t)+E(t)+I(t)+R(t) is constant and therefore R(t) is omittable. By normalization
e(t) := E(t)

N we arrive at

s′(t) = −βs(t)i(t)
e′(t) = βs(t)i(t)− κe(t)
i′(t) = κe(t)− γi(t)

2.3 The vSEIR model
Now we want to include vaccines in our model. We assume that a vaccination instantly transports an individual
from the susceptible into the recovered group. We also assume that only susceptible individuals receive vacci-
nations and that every available vaccine is consumed immediately.
We denote the number of vaccines that can be given out per day with v(t). The number of newly vaccinated
persons is given by min(S(t), v(t)) and therefore the system of ODEs can be augmented into

S′(t) = −βS(t)
N

I(t)−min(S(t), v(t))

E′(t) = β
S(t)
N

I(t)− κE(t)

I ′(t) = κE(t)− γI(t)
R′(t) = γI(t) + min(S(t), v(t))
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We can normalize this model as before by normalizing the number of available vaccines with vrel(t) := v(t)
N .

Again R can be omitted as before. This results in

s′(t) = −βs(t)i(t)−min(s(t), vrel(t))
e′(t) = βs(t)i(t)− κe(t)
i′(t) = κe(t)− γi(t)

For further reference, we refer to the literature, for example [1, 4]

3 Numerical strategies
As already the SIR model is a nonlinear system of ODEs it is in general not possible to find a solution analytically.
Here we will develop a simple method to approximate the solution numerically.

3.1 Forward Euler method
In order to illustrate the general method we will start with the simpliest model, the SIR model. We consider
an interval [0, T ] and start by discretising it into n+ 1 points in time. For the sake of simplicity we choose an
equidistant discretisation which yields the points in time

tk : = T

n
k, k = 0, 1, . . . , n

As we need some approximation for s′(tk) we pick

s′(tk−1) ≈ s(tk)− s(tk−1)
tk − tk−1

(5)

By using a Taylor series at t = tk−1 one can deduce

s′(tk−1)− s(tk)− s(tk−1)
tk − tk−1

= − T

2ns
′′(ξk)

with ξk ∈ [tk−1, tk]. One can easily show that s ∈ C∞([0, T ]) and therefore s′′ is bounded. Therefore the
approximation proposed in (5) has order O(n−1).
Set sk := s(tk) and ik := i(tk) for every k = 0, 1, . . . , n. One can solve (5) for s(tk) = sk and yields

sk ≈ sk−1 + (tk − tk−1)s′(tk−1)

As (s, i) solves the ODE one has s′(tk−1) = −βsk−1ik−1 =: fs(tk−1, sk−1, ik−1) and i′(tk−1) = βsk−1ik−1 −
γik−1 =: fi(tk−1, sk−1, ik−1) where the right sides of the ODEs have been hidden in the functions fs and fi. By
combining this with the approximaton (5) and by using tk − tk−1 = T

n we get

sk ≈ sk−1 + T

n
fs(tk−1, sk−1, ik−1)

ik ≈ ik−1 + T

n
fi(tk−1, sk−1, ik−1)

This recursive formula can easily be implemented in a programming language of your choice, an algorithm is
given in algorithm 1.
Algorithm 1: Forward Euler for SIR
Input : Initial values s0, i0 ∈ [0, 1], parameters β, γ ∈ R+, grid size n ∈ N, final time T
Output: Approximations sk, ik to s(tk), i(tk) for k = 1, . . . , n
Set k = 1; while k ≤ n do

sk = sk−1 + T
n fs(tk−1, sk−1, ik−1);

ik = ik−1 + T
n fi(tk−1, sk−1, ik−1);

k = k + 1;

The result of this algorithm for different sets of parameters is shown in fig. 1.
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Figure 1: Behaviour of the SIR model for different parameters, i0 = 0.01.

3.1.1 Forward Euler method in a general setting

Now we want to generalise algorithm 1 to an arbitrary system of non-autonomous first-order ordinary differential
equations, that is

x′(t) = F (t, x(t)) (6)
x(0) = x0 (7)

where x is Rn-valued. As before we discretise the interval [0, T ] into n+ 1 points of time, for sake of simplicity
we pick equidistant points. The resulting points in time are again

tk := k
T

n
for k = 0, 1, . . . , n

Denote xk := x(tk). With the same argument as before we obtain

F (tk−1, xk−1) = x′(tk−1)

≈ xk − xk−1

tk − tk−1

Again by solving for xk one arrives at the recursive formula

xk = xk−1 + (tk − tk−1)F (tk−1, xk−1)

Now one can adjust Algorithm 1 accordingly:
Algorithm 2: General forward Euler
Input : Initial value x0 ∈ Rn, right side F : R× Rn → Rn, grid size n ∈ N, final time T
Output: Approximations xk to x(tk) for k = 1, . . . , n
Set k = 1; while k ≤ n do

xk = xk−1 + T
nF (tk−1, xk−1)

k = k + 1;
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3.2 Total number of infections
In Exercise 6 the total number of infections Ninf up to some time τ will be computed. For the SIR- and SEIR
model this is an easy task as an individual did not suffer from the disease if and only if it is in group S. For the
vSEIR model this turns out to be different as vaccinated individuals are part of group R but weren’t infected
so the usual formula Ninf = N − S(τ) does not work. We propose this algorithm to determine Ninf:
Algorithm 3: Total number of infections
Input : Solution y = (s, e, i) ∈ R3×(n+1) taken from forward Euler with final time T , vSEIR-parameter

κ, total population N , time of evaluation τ
Output: Total number of infections Ninf up to time τ
Set itotal := i1, h := T

n , k := 1;
while hk < τ do

itotal = itotal + hκek

k = k + 1;
Set Ninf := Nitotal

4 Exercises
These exercises aim to solve the vSEIR-model using the forward Euler method. First you are going to implement
a general forward Euler routine, test it with some example scenarios and "experimentally" confirm Theorem
2.1. Then you will create some routines to load parameters without changing your source code. After that you
will start exploring the vSEIR-model in detail, i.e. you will calculate the number of total infections, analyze the
progress of the pandemic using phase portraits and consider the impact of different vaccination programmes.
Finally you will evaluate a simple lockdown strategy using a modified Euler algorithm.

1. Implement algorithm 2 in a python function y = forward_euler(fun, y_0, T, n). Here fun is sup-
posed to be a function representing the right-hand side of the ODE akin to F in (6). y0 denotes the initial
value, T denotes the final time and n describes the grid size.

2. Use the function forward_euler to solve the SIR-model with parameters β0 = 0.5, γ = 0.15 and k ≡ 0.3
respectively k ≡ 0.6. Pick a sufficient final time T and grid size n. Try different initial values (s0, i0) ∈
[0, 1]2 with s0 + i0 = 1.

3. Pick four scenarios of your choice. For each scenario plot s and i in a single graph. Add axis labels and a
legend to each graph.
Compare different initial values and different values of k. Confirm Theorem 2.1.

4. Now write a function that reads the file Param.txt. This file contains a set of parameters for the vSEIR-
model, taylored to the situation of Germany and taken (mainly) from [2, Table 1]. Every line consists of
the name of the parameter, a single space and then the corresponding number. Store the parameters in
a dictionary param where the keys are the names of the parameters and the values are the corresponding
values.
Read the files Test1.txt and Test2.txt analogously and store the resulting parameters and initial values
in dictionaries test_1 resp. test_2. Print every dictionary to the console.

5. Use forward_euler to solve the SIR-model with the settings given by Test1.txt. Solve the vSEIR-model
using the settings provided by Test1.txt and Test2.txt. Construct a third setting test_3 of your choice
with non-constant k and vrel and test it as well.
Plot the resulting curves for i for all test settings in a single graph. Compare the behaviour of the SIR-
and the vSEIR-model for setting test_1. What is the effect of the class e? In what way do different
values of k and vrel change the dynamics of the model?

6. Implement algorithm 3 in a function N_inf = total_infected(y, kappa, N, T, t). Calculate the
total number of infected people up to some time τ for setting test_1 where τ is up to your choice.
Compute i(τ) + r(τ) in the same setting. Why do those values coincide?
Perform the same calculations for the settings test_2 and test_3. Do the results of i(τ) + r(τ) and
total_infected coincide? If not, why?

7. Consider now the settings test_2 and test_3. Compute Ninf for every single day and save the resulting
data to the files totalInf2.txt and totalInf3.txt.

8. Create phase portraits akin to Fig. 2 for every setting. Choose s as x-axis and i as y-axis. Draw the
trajectories for different initial values (s0, i0). You may omit the starting values provided by the particular
setting and you may use the tool provided in DrawArrows.py. Interpret every phase portrait.
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Figure 2: Example phase portrait for SIR

9. For the final exercise we want to analyze the behavior of the vSEIR-model in an adaptive lockdown
strategy. We assume a simple lockdown strategy depending on the number of active infections:
If there is no active lockdown we have k(t) = ka, during an active lockdown we have reduced contacts
and k(t) = kb with 0 ≤ ka < kb ≤ 1. We start our simulation without an active lockdown. Once the
number of infectious individuals reaches or surpasses a threshold ib we start a lockdown until the number
of infectious individuals decreases below ia where 0 < ia < ib ≤ 1.
Write a pseudocode that is suitable for simulating this strategy involving the vSEIR-model. Implement
your pseudocode in a function adaptive_euler.
Pick ka = 0.4, kb = 0.8 and ia and ib of your choice. Plot and analyse the resulting curves for every
scenario. Do the lockdown strategies prove useful or could you think of a different strategy? How do
vaccines influence the situation?
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