[1]
|
C. Mehlmann, S. Danilov, M. Losch, J.-F. Lemieux,
N. Hutter, T. Richter, P. Blain, E. C. Hunke, and
P. Korn.
Sea Ice Numerical VP-Comparison Benchmark.
Mendeley Dataset, 2021.
[ bib |
DOI ]
|
[2]
|
C. Mehlmann and P. Korn.
Sea-ice dynamics on triangular grids.
Journal of Computational Physics, 428, 110086, 2021.
[ bib |
DOI ]
|
[3]
|
N. Margenberg, C. Lessig, and T. Richter.
Structure preservation for the Deep Neural Network Multigrid Solver.
ETNA - Electronic Transactions on Numerical
Analysis, 56, 86--101, 2021.
[ bib |
DOI ]
|
[4]
|
T. Richter and G. Judakova.
Locally Modified Second Order Finite Elements.
Zenodo, 2021.
[ bib |
DOI ]
|
[5]
|
M. Braack, R. Becker, D. Meidner, T. Richter, and
B. Vexler.
The Finite Element Toolkit Gascoigne.
Zenodo, 2021.
[ bib |
DOI ]
|
[6]
|
S. Frei, T. Richter, and T. Wick.
LocModFE: Locally modified finite elements for approximating
interface problems in deal.II.
Software Impacts, 8, 2021.
[ bib |
DOI ]
|
[7]
|
H. von Wahl, T. Richter, and C. Lehrenfeld.
An unfitted Eulerian finite element method for the time-dependent
Stokes problem on moving domains.
IMA Journal of Numerical Analysis, 2021.
[ bib |
DOI |
arXiv ]
|
[8]
|
L. Failer, P. Minakowski, and T. Richter.
On the Impact of Fluid Structure Interaction in Blood Flow
Simulations.
Vietnam Journal of Mathematics, 49(1), 169--187, 2021.
[ bib |
DOI |
https ]
|
[9]
|
L. Lautsch and T. Richter.
Error estimation and adaptivity for differential equations with
multiple scales in time.
Computational Methods in Applied Mathemacics, 2021.
Online first.
[ bib |
DOI |
arXiv ]
|
[10]
|
T. Hagemeier, D. Thévenin, and T. Richter.
Settling of spherical particles in the transitional regime.
International Journal of Multiphase Flow, 138, 103589,
2021.
[ bib |
DOI |
arXiv ]
|
[11]
|
M. Minakowska, T. Richter, and S. Sager.
A finite element / neural network framework for modeling suspensions
of non-spherical particles. Concepts and medical applications.
Vietnam Journal of Mathematics, 49(1), 207--235, 2021.
[ bib |
DOI ]
|
[12]
|
H. von Wahl, T. Richter, S. Frei, and T. Hagemeier.
Falling balls in a viscous fluid with contact: Comparing numerical
simulations with experimental data.
Physics of Fluids, 33, 033304, 2021.
Editor's Pick.
[ bib |
DOI |
arXiv ]
|
[13]
|
T. Richter.
An averaging scheme for the efficient approximation of time-periodic
flow problems.
Computers and Fluids, 214, 104769, 2021.
[ bib |
DOI ]
|
[14]
|
N. Margenberg and T. Richter.
Parallel time-stepping for fluid-structure interactions.
Mathematical Modelling of Natural Phenomena, 16, 20,
2021.
[ bib |
DOI |
arXiv ]
|
[15]
|
M. Soszyńska and T. Richter.
Adaptive time-step control for a monolithic multirate scheme coupling
the heat and wave equation.
BIT Numerical Mathematics, 2021.
[ bib |
DOI |
arXiv ]
|
[16]
|
H. von Wahl and T. Richter.
Using a deep neural network to predict the motion of under-resolved
triangular rigid bodies in an incompressible flow.
International Journal for Numerical Methods in Fluids,
2021.
[ bib |
DOI |
arXiv ]
|
[17]
|
C. Mehlmann, S. Danilov, M. Losch, J. Lemieux,
N. Hutter, T. Richter, P. Blain, E. Hunke, and
P. Korn.
Simulating linear kinematic features in viscous-plastic sea ice
models on quadrilateral and triangular grids.
Journal of Advances in Modeling Earth Systems, 2021.
Accepted.
[ bib |
DOI |
arXiv ]
|
[18]
|
S. Frei, A. Heinlein, and T. Richter.
On temporal homogenization in the numerical simulation
of atherosclerotic plaque growth.
volume 21. Wiley, 2021.
[ bib |
DOI |
arXiv ]
|
[19]
|
N. Margenberg, R. Jendersie, T. Richter, and
C. Lessig.
Deep neural networks for geometric multigrid methods, 2021.
[ bib |
arXiv ]
|
[20]
|
A. Daddi-Moussa-Ider, A. Sprenger, T. Richter,
H. L"owen, and A. Menzel.
Steady azimuthal flow field induced by a rotating sphere near a rigid
disk or inside a gap between two coaxially positioned rigid disks.
Physics of Fluids, 33(8), 2021.
Editor's Pick.
[ bib |
DOI |
arXiv ]
|