[1] C. Mehlmann, S. Danilov, M. Losch, J.-F. Lemieux, N. Hutter, T. Richter, P. Blain, E. C. Hunke, and P. Korn. Sea Ice Numerical VP-Comparison Benchmark. Mendeley Dataset, 2021. [ bib | DOI ]
[2] C. Mehlmann and P. Korn. Sea-ice dynamics on triangular grids. Journal of Computational Physics, 428, 110086, 2021. [ bib | DOI ]
[3] N. Margenberg, C. Lessig, and T. Richter. Structure preservation for the Deep Neural Network Multigrid Solver. ETNA - Electronic Transactions on Numerical Analysis, 56, 86--101, 2021. [ bib | DOI ]
[4] T. Richter and G. Judakova. Locally Modified Second Order Finite Elements. Zenodo, 2021. [ bib | DOI ]
[5] M. Braack, R. Becker, D. Meidner, T. Richter, and B. Vexler. The Finite Element Toolkit Gascoigne. Zenodo, 2021. [ bib | DOI ]
[6] S. Frei, T. Richter, and T. Wick. LocModFE: Locally modified finite elements for approximating interface problems in deal.II. Software Impacts, 8, 2021. [ bib | DOI ]
[7] H. von Wahl, T. Richter, and C. Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. IMA Journal of Numerical Analysis, 2021. [ bib | DOI | arXiv ]
[8] L. Failer, P. Minakowski, and T. Richter. On the Impact of Fluid Structure Interaction in Blood Flow Simulations. Vietnam Journal of Mathematics, 49(1), 169--187, 2021. [ bib | DOI | https ]
[9] L. Lautsch and T. Richter. Error estimation and adaptivity for differential equations with multiple scales in time. Computational Methods in Applied Mathemacics, 2021. Online first. [ bib | DOI | arXiv ]
[10] T. Hagemeier, D. Thévenin, and T. Richter. Settling of spherical particles in the transitional regime. International Journal of Multiphase Flow, 138, 103589, 2021. [ bib | DOI | arXiv ]
[11] M. Minakowska, T. Richter, and S. Sager. A finite element / neural network framework for modeling suspensions of non-spherical particles. Concepts and medical applications. Vietnam Journal of Mathematics, 49(1), 207--235, 2021. [ bib | DOI ]
[12] H. von Wahl, T. Richter, S. Frei, and T. Hagemeier. Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data. Physics of Fluids, 33, 033304, 2021. Editor's Pick. [ bib | DOI | arXiv ]
[13] T. Richter. An averaging scheme for the efficient approximation of time-periodic flow problems. Computers and Fluids, 214, 104769, 2021. [ bib | DOI ]
[14] N. Margenberg and T. Richter. Parallel time-stepping for fluid-structure interactions. Mathematical Modelling of Natural Phenomena, 16, 20, 2021. [ bib | DOI | arXiv ]
[15] M. Soszyńska and T. Richter. Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation. BIT Numerical Mathematics, 2021. [ bib | DOI | arXiv ]
[16] H. von Wahl and T. Richter. Using a deep neural network to predict the motion of under-resolved triangular rigid bodies in an incompressible flow. International Journal for Numerical Methods in Fluids, 2021. [ bib | DOI | arXiv ]
[17] C. Mehlmann, S. Danilov, M. Losch, J. Lemieux, N. Hutter, T. Richter, P. Blain, E. Hunke, and P. Korn. Simulating linear kinematic features in viscous-plastic sea ice models on quadrilateral and triangular grids. Journal of Advances in Modeling Earth Systems, 2021. Accepted. [ bib | DOI | arXiv ]
[18] S. Frei, A. Heinlein, and T. Richter. On temporal homogenization in the numerical simulation of atherosclerotic plaque growth. volume 21. Wiley, 2021. [ bib | DOI | arXiv ]
[19] N. Margenberg, R. Jendersie, T. Richter, and C. Lessig. Deep neural networks for geometric multigrid methods, 2021. [ bib | arXiv ]
[20] A. Daddi-Moussa-Ider, A. Sprenger, T. Richter, H. L"owen, and A. Menzel. Steady azimuthal flow field induced by a rotating sphere near a rigid disk or inside a gap between two coaxially positioned rigid disks. Physics of Fluids, 33(8), 2021. Editor's Pick. [ bib | DOI | arXiv ]