[1] Y. Shih, C. Mehlmann, M. Losch, and G. Stadler. Robust and efficient primal-dual Newton-Krylov solvers for viscous-plastic sea-ice models. Journal of Computational Physics, 474, 111802, 2023. [ bib | DOI ]
[2] U. Kapustsin, U. Kaya, and T. Richter. Implementation of a hybrid neural network solver for the Poisson problem. Zenodo, 2023. [ bib | DOI ]
[3] U. Kapustsin, U. Kaya, and T. Richter. A hybrid finite element/neural network solver and its application to the Poisson problem. 2023. [ bib | DOI | http ]
[4] D. Dominguez, L. Lautsch, and T. Richter. A variational approach for temporal multiscale problems and its application to adaptivity and optimization. 2023. [ bib | DOI ]
[5] C. Mehlmann, G. Capodaglio, and S. Danilov. Simulating sea-ice deformation in viscous-plastic sea-ice models with CD-grids. Journal of Advances in Modeling Earth Systems, 15(8), e2023MS003696, 2023. [ bib | DOI ]
[6] P. de Almeida Konzen, L. Guidi, and T. Richter. Quasi-Random Discrete Ordinates Method to Radiative Transfer Equation with Linear Anisotropic Scattering. In Anais do(a) Anais do Encontro Nacional de Modelagem Computacional, Encontro de Ciência e Tecnologia de Materiais, Conferência Sul em Modelagem Computacional e Seminário e Workshop em Engenharia Oceânica. Even3, 2023. [ bib | DOI ]
[7] H. von Wahl and T. Richter. An Eulerian time-stepping scheme for a coupled parabolic moving domain problem using equal-order unfitted finite elements. In Proceedings in Applied Mathematics and Mechanics, volume 22. 2023. [ bib | DOI ]
[8] T. Richter, M. Janczyk, and R. Ulrich. Diffusion models with time-dependent parameters: An analysis of computational effort and accuracy of different numerical methods. Journal of Mathematical Psychology, 114, 102756, 2023. Winner of the 2025 Luce Outstanding Paper Award by the Society of Mathematical Psychology. https://mathpsych.org/page/press/23. [ bib | DOI ]
[9] C. Hohenegger, P. Korn, L. Linardakis, R. Redler, R. Schnur, P. Adamidis, J. Bao, S. Bastin, M. Behravesh, M. Bergemann, J. Biercamp, H. Bockelmann, R. Brokopf, N. Brüggemann, L. Casaroli, F. Chegini, G. Datseris, M. Esch, G. George, M. Giorgetta, O. Gutjahr, H. Haak, M. Hanke, T. Ilyina, T. Jahns, J. Jungclaus, M. Kern, D. Klocke, L. Kluft, T. Kölling, L. Kornblueh, S. Kosukhin, C. Kroll, J. Lee, T. Mauritsen, C. Mehlmann, T. Mieslinger, A. K. Naumann, L. Paccini, A. Peinado, D. S. Praturi, D. Putrasahan, S. Rast, T. Riddick, N. Roeber, H. Schmidt, U. Schulzweida, F. Schütte, H. Segura, R. Shevchenko, V. Singh, M. Specht, C. C. Stephan, J.-S. von Storch, R. Vogel, C. Wengel, M. Winkler, F. Ziemen, J. Marotzke, and B. Stevens. ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16(2), 779--811, 2023. [ bib | DOI ]
[10] S. Frei, G. Judakova, and T. Richter. A locally modified second-order finite element method for interface problems and its implementation in 2 dimensions. ESAIM: Mathematical Modelling and Numerical Analysis, 2023. Accepted. [ bib | https ]
[11] P. Minakowski and T. Richter. A priori and a posteriori error estimates for the Deep Ritz method applied to the Laplace and Stokes problem. Journal of Computational and Applied Mathematics, 421, 114845, 2023. Erratum. The proof to Lemma 1 is faulty. A correction is published as erratum: https://doi.org/10.1016/j.cam.2024.116406. [ bib | DOI | arXiv ]
[12] H. von Wahl and T. Richter. Error Analysis for a Parabolic PDE Model Problem on a Coupled Moving Domain in a Fully Eulerian Framework. SIAM Journal on Numerical Analysis, 61(1), 286=314, 2023. [ bib | DOI ]
[13] L. Gkimisis, T. Richter, and P. Benner. Adjacency-based, non-intrusive model reduction for Vortex-Induced Vibrations. In Proceedings in Applied Mathematics & Mechanics, volume 23. 2023. [ bib | DOI | http ]
[14] T. Richter, V. Dansereau, C. Lessig, and P. Minakowski. A snippet from neXtSIM_DG : next generation sea-ice model with DG. Zenodo, 2023. [ bib | DOI ]
[15] T. Richter, V. Dansereau, C. Lessig, and P. Minakowski. The neXtSIM-DG dynamical core: A Framework for Higher-order Finite Element Sea Ice Modeling. Geophysical Model Development, 2023. [ bib | DOI ]