[1]
|
M. Braack and T. Richter.
Solving Multidimensional Reactive Flow Problems with Adaptive Finite
Elements.
In W. Jäger, R. Rannacher, and J. Warnatz,
editors, Reactive Flows, Diffusion and Transport, pages 93--112.
Springer Berlin Heidelberg, 2007.
[ bib |
DOI ]
|
[2]
|
P. Lin and T. Richter.
An Adaptive Homotopy Multi-grid Method for Molecule Orientations of
High Dimensional Liquid Crystals.
Journal for Computational Physics, 255, 2069--2082,
2007.
[ bib |
DOI ]
|
[3]
|
M. Braack and T. Richter.
Stabilized adaptive finite elements for laminar burner in 3-d.
In W. et. al., editor, Eccomas CFD
Proceedings. 2006.
[ bib ]
|
[4]
|
R. Becker, M. Braack, and T. Richter.
Parallel multigrid on locally refined meshes.
In W. Jäger, R. Rannacher, and J. Warnatz,
editors, Reactive Flows, Diffusion and Transport, pages 77--92.
Springer Berlin Heidelberg, 2006.
[ bib |
DOI ]
|
[5]
|
M. Braack and T. Richter.
Mesh and model adaptivity for flow problems.
In W. Jäger, R. Rannacher, and J. Warnatz,
editors, Reactive Flows, Diffusion and Transport, pages 47--75.
Springer Berlin Heidelberg, 2006.
[ bib |
DOI ]
|
[6]
|
M. Braack and T. Richter.
Stabilized finite elements for 3-D reactive flows.
Int. J. Numer. Meth. Fluids, 51, 981--999, 2006.
[ bib |
DOI ]
|
[7]
|
M. Braack and T. Richter.
Solutions of 3D Navier-Stokes benchmark problems with adaptive finite
elements.
Computers and Fluids, 35(4), 372--392, 2006.
[ bib |
DOI |
.pdf ]
|
[8]
|
T. Richter.
Parallel Multigrid Method for Adaptive Finite Elements with
Application to 3D Flow Problems.
Ph.D. thesis, University of Heidelberg, 2005.
URN: urn:nbn:de:bsz:16-opus-57433.
[ bib |
.pdf ]
|
[9]
|
M. Braack and T. Richter.
Local projection stabilization for the Stokes system on anisotropic
quadrilateral meshes.
In B. C. et al., editor, Enumath
Proceedings 2005, pages 770--778. Springer, 2005.
[ bib ]
|
[10]
|
M. Braack and T. Richter.
Solutions of 3D Navier-Stokes benchmark problems with adaptive finite
elements, 2004.
SFB 2004-44.
[ bib ]
|
[11]
|
T. Richter.
Funktionalorientierte Gitteroptimierung für die Finite
Elemente Methode.
Master's thesis, University of Heidelberg, 2001.
[ bib |
.pdf ]
|