Finite Elements

Carolin Mehlmann, University of Magdeburg

December 11, 2024

Agenda

1. Finite Elements

- Finite element meshes
- Linear finite elements
- From finite elements to linear systems
- Numerical analysis
- Finite elements computational remarks

Steps for a finite element discretization

- Step 1: We discretize the domain Ω by a mesh Ω_h
- Step 2: On Ω_h we discretize the function space $\mathcal{V} = H_0^1(\Omega)$ by a finite element space V_h Step 3: We restrict the variational formulation to V_h for some frobunc $u_h \in V_h$ $(\nabla u_h, \nabla \phi_h) = (f, \phi_h)$ for all $\phi_h in V_h$

- We discretize the domain Ω by splitting it into simple **open elements**, e.g. triangles, quadrilaterals (in 2d) or tetrahedras, prisms, hexahedras, pyramids (in 3d)
- The finite element mesh Ω_h is the set of all elements

$$\Omega_h = \{T_1, T_2, \dots, T_N\}$$

MATH

Basic rule: triangles should look like triangles, tetrahedras should look like tetrahedras, ...

II:Shape regularity for triangular meshes:

1 We call a mesh shape regular, if it holds for all $T \in \Omega_h$

$$\frac{\operatorname{diam}(T)}{\rho_T} < c,$$

where ρ_T is the diameter of the largest circle in T and diam(T) the longest edge of T

2 Equivalent definition: All angles α in T are bound away from zero

$$\alpha \ge \alpha_0 > 0$$

with a constant $\alpha_0 > 0$.

Basic rule: triangles should have the same size more or less, ...

III: Size regularity for triangular meshes:

 $\max_{T \in T_h} h_T \le c \min_{T \in T_h} h_T$

Local Finite Element space

.

- On every element $T \in \Omega_h$ define the basis functions of a simple polynomial space
- linear finite elements on triangles
- Triangle with the points $x^{(1)} = (0,0), x^{(2)} = (h,0)$ and $x^{(3)} = (0,h)$

- We have basis functions on every triangle $T \in \Omega_h$
- We combine them to a global function space

$$V_h := \{ \phi_h \in C(\bar{\Omega}) \mid \phi \Big|_T \in P^1 := \operatorname{span} \left(\phi_h^{(1)}, \phi_h^{(2)}, \phi_h^{(3)} \right) \}$$

• This is called the Lagrange basis or nodal basis. It holds

$$\phi_h^{(i)} \in V_h: \quad \phi_h^{(i)} \Big|_T \in P^1, \quad \phi_h^{(i)}(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- Assume that the mesh elements $T \in \Omega_h$ are quadrilaterals
- bi-linear finite elements:
- Let T be a quadrilateral with the points $x^{(1)} = (0,0), x^{(2)} = (h,0), x^{(3)} = (0,h), x^{(4)} = (h,h).$

$$\begin{split} \phi^{(1)}(x,y) &= \left(1 - \frac{x}{h}\right) \left(1 - \frac{y}{h}\right), \quad \phi^{(2)}(x,y) = \frac{x}{h} \left(1 - \frac{y}{h}\right), \\ \phi^{(3)}(x,y) &= \left(1 - \frac{x}{h}\right) \frac{y}{h}, \quad \phi^{(4)}(x,y) = \frac{xy}{h^2} \end{split}$$

• The Lagrange basis of the finite element space is given as

$$V_h := \{ \phi_h \in C(\bar{\Omega}) \mid \phi \Big|_T \in Q^1 := \operatorname{span} \left(\phi_h^{(1)}, \phi_h^{(2)}, \phi_h^{(3)}, \phi_h^{(4)} \right) \}$$

• The Lagrange basis or nodal basis is given by

$$\phi_h^{(i)} \in V_h: \quad \phi_h^{(i)} \Big|_T \in Q^1, \quad \phi_h^{(i)}(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

(2

$$u_h \in V_h \quad (\nabla u_h, \nabla \phi_h) = (f, \phi_h) \quad \forall \phi_h \in V_h.$$
 (1)

- The finite element space is given by a local basis $\mathcal{L} = \operatorname{span}\{\phi_h^{(1)}, \dots, \phi_h^{(N)}\}$
- We split (😵) into N equations

$$u_h \in V_h$$
 $(\nabla u_h, \nabla \phi_h^{(i)}) = (f, \phi_h^{(i)})$ $\forall i = 1, \dots, N$

• We write the unknown solution $u_h \in V_h$ as

$$u_h(x,y) = \sum_{j=1}^N \mathbf{u}_j \boldsymbol{\phi}_h^{(j)}(x,y)$$

A C

and insert this notation into (??)

$$\sum_{j=1}^{N} (\nabla \phi_h^{(j)}, \nabla \phi_h^{(i)}) \mathbf{u}_j = (f, \phi_h^{(i)}) \quad \forall i = 1, \dots, N$$
(3)

• This is equivalent to a linear system of equations

$$\mathbf{A}\mathbf{u} = \mathbf{f}, \quad \mathbf{A}_{ij} := (\nabla \phi_h^{(j)}, \nabla \phi_h^{(i)}), \quad \mathbf{f}_i := (f, \phi_h^{(i)})$$

- Step 1: Approximation estimates (qualitative; no convergence rates in terms of h powers yet)
- Step 2: Interpolation estimates (yielding local h powers)
- Step 3: Convergence results (yielding global h powers)

We have

Duraly hic
$$\mathcal{C}(\nabla u, \nabla \phi) = (f, \phi) \quad \forall \phi \in V,$$

Liscock $(\nabla u_h, \nabla \phi_h) = (f, \phi_h) \quad \forall \phi_h \in V_h.$

Taking in particular only discrete test functions from $V_h \subset V$ (confroming finite elements) and subtraction of both equations yields:

Proposition 1 (Galerkin orthogonality). It holds:

$$\alpha(u,v) = (\nabla u, \nabla v)$$

$$(\nabla(\underline{u}-\underline{u}_h),\phi_h) = 0 \quad \forall \phi_h \in V_h,$$

or in the more general notation:

$$a(u-u_h,\phi_h)=0 \quad \forall \phi_h \in V_h.$$

Poisson Pablem

Proof 2 $\alpha(u, q) = (F, q) \forall q \in V \circ conforming F.E$

 $F = T \int T \alpha(u, \varphi_u) = (F, \varphi_u)$ $F = T \int T \alpha(u_u, \varphi_u) = (F, \varphi_u)$

Choose $\phi = \phi_{\mu}$

VucV

Figure: Illustration of Galerin orthogonality.

Proof. Taking $\phi_h \in V_h$ in both previous equations yields:

$$(\nabla u, \nabla \phi) - (\nabla u_h, \nabla \phi_h) = (f, \phi) - (f, \phi_h).$$

Taking both equations in the discrete space V_h means $\phi := \phi_h$ (is no problem since $V_h \subset V$) and with that

$$(f,\phi_h) - (f,\phi_h) = 0.$$

Proposition 2. For the Poisson equation the best approximation holds true

Proof:

$$\|u - u_h\|_V = \min_{\substack{\phi_h \in V_h \\ \phi_h \in V_h \\ \phi$$

First, we need to construct an interpolation operator in order to approximate the continuous solution at certain nodes.

Numerical analysis:

Definition 3 (Interpolation operator). Let $\Omega = (0,1)^2$. A P_1 interpolation operator i_h : $C^1(\Omega) \to V_h$ is defined by

$$(i_h v)(x) = \sum_{j=0}^{n+1} v(x_j) \phi_j(x) \quad \forall v \in H^1.$$

This definition is well-defined since H^1 functions are continuous in 2D and are pointwise defined. The interpolation i_h creates a piece-wise linear function that coincides in the support points x_j with its H^1 function.

local estimates

Step 2. H^1 and L^2 estimates

Lemma 4. For a function $u \in H^2$, it exists a constant C (independent of h) such that

$$\begin{aligned} \|u - i_h u\|_{L^2(T)} &\leq C h^2 \|(\nabla)^2 u\|_{L^2(T)}, \\ \|u - i_h u\|_{H^1(T)} &\leq C h \|(\nabla)^2 u\|_{L^2(T)}. \end{aligned}$$

Lemma 5. There exists a constant C (independent of h) such that for all $u \in H^1(\Omega)$, it holds

$$\|i_h u\|_{H^1} \le C \|u\|_{H^1(T)}$$

and

$$||u - i_h u||_{L^2(T)} \le Ch |u|_{H^1(T)}.$$

Theorem 6. Let $u \in H_0^1$ and $u_h \in V_h$ be the solutions of the continuous and discrete Poisson problems. Then, if $u \in H^2$ (for instance when $f \in L^2$ and in higher dimensions when the domain is sufficiently smooth or polygonal and convex), we have

$$\|u - u_h\|_{H^1(\Omega)} \le Ch \|(\nabla)^2 u\|_{L^2(\Omega)} \le Ch \|f\|_{L^2(\Omega)}.$$

Thus the convergence in the H^1 norm (the energy norm) is linear and depends continuously on the problem data.

Scur 1

		1-1-1			
Numerical analysis:			2D Poisson: linear FEM		
Level	Elements	DoFs	h	L2 err	H1 err
2	16	25	1.11072	0.0955104	0.510388
3	64	81	0.55536	0.0238811	0.252645
4	256	289	0.27768	0.00597095	0.126015
5	1024	1089	0.13884	0.00149279	0.0629697
6	4096	4225	0.06942	0.0003732	0.0314801
7	16384	16641	0.03471	9.33001e-05	0.0157395
8	65536	66049	0.017355	2.3325e-05	0.00786965
9	262144	263169	0.00867751	5.83126e-06	0.00393482
10	1048576	1050625	0.00433875	1.45782e-06	0.00196741
11	4194304	4198401	0.00216938	3.64448e-07	0.000983703

- The elements are $K_i, i = 0, \ldots, n$
- The DOFs represent the number of nodal points $x_i, i = 0, ..., n + 1$

Assembling the matrix

• We must compute the matrix entries

$$A_{ij} = (\nabla \phi_h^{(j)}, \nabla \phi_h^{(i)}) = \int_{\Omega} \nabla \phi_h^{(j)} \cdot \nabla \phi_h^{(i)} \, \mathrm{d}x = \sum_{T \in \Omega_h} \int_T \nabla \phi_h^{(j)} \cdot \nabla \phi_h^{(i)} \, \mathrm{d}x$$

- Each nodal basis function $\phi_h^{(i)}$ is non-zero only in the four quadrilaterals touching x_i
- The product $\nabla \phi_h^{(j)} \cdot \nabla \phi_h^{(i)}$ is non-zero only on elements T that have both points x_i and x_j in common

bi-linear basis functions

Finite Elements

Bi-linear finite elements for Laplace

Finite Elements

- Regular mesh with $N = M \cdot M$ nodes
- The test function $\phi_h^{(i)}$ couples with itself and 8 further test functions
- The matrix elements A_{ij} must only be computed in 4 elements

• We first compute all couplings in every element T_k for k = 1, 2, 3, 4

$$a_{ij}^T := \int_T \nabla \phi_h^{(i)} \cdot \nabla \phi_h^{(j)} \, \mathrm{d}x$$

• Then, we put it all together in the global matrix

linear finite elements in 2D

- We first discretize the domain, then we set up the finite element space
- We must integrate the matrix and the right hand side

H^1 -error estimate:

- first order for linear finite elements
- allowing for the verification of practical results

Summary

Thanks

Temporary page!

 IAT_EX was unable to guess the total number of pages correctly. As there was some cessed data that should have been added to the final page this extra page has be to receive it.

If you rerun the document (without altering it) this surplus page will go away LAT_EX now knows how many pages to expect for this document.