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Finite Element Discretization

Steps for a finite element discretization

Step 1: We discretize the domain ⌦ by a mesh ⌦h

Step 2: On ⌦h we discretize the function space V = H
1
0 (⌦) by a finite element space Vh

Step 3: We restrict the variational formulation to Vh

uh 2 Vh (ruh,r�h) = (f,�h) 8�h forall�hinVh

Step 4: We solve a linear system of equations
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Finite Element Meshes Construction

• We discretize the domain ⌦ by splitting it into simple open elements, e.g. triangles,
quadrilaterals (in 2d) or tetrahedras, prisms, hexahedras, pyramids (in 3d)

• The finite element mesh ⌦h is the set of all elements

⌦h = {T1, T2, . . . , TN}
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Finite Element Meshes Construction

I: structural assumptions

1. The union of all elements covers the domain

⌦̄ =

N[

i=1

T̄i

2. Two di↵erent elements never overlap

Ti \ Tj = ; 8i 6= j

3. The closure of two elements can only overlap in a corner vertex, an edge or a face

T̄i \ T̄j =

8
><

>:

x a vertex

e an edge

f a face

8i 6= j
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Finite Element Meshes Shape assumption

Basic rule: triangles should look like triangles, tetrahedras should look like tetrahedras, ...

II:Shape regularity for triangular meshes:

1 We call a mesh shape regular, if it holds for all T 2 ⌦h

diam(T )

⇢T
< c,

where ⇢T is the diameter of the largest circle in T and diam(T ) the longest edge of

T

2 Equivalent definition: All angles ↵ in T are bound away from zero

↵ � ↵0 > 0

with a constant ↵0 > 0.
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Finite Element Meshes Size regularity

Basic rule: triangles should have the same size more or less, ...

II: Size regularity for triangular meshes:

max
T2Th

hT  c min
T2Th

hT
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Finite Element Meshes Examples
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Finite Element Meshes Examples
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Finite Element Meshes Examples
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Finite Elements Step 2 - Discretize V by Vh

Local Finite Element space

• On every element T 2 ⌦h define the basis functions of a simple polynomial space

• linear finite elements on triangles

• Triangle with the points x
(1)

= (0, 0), x
(2)

= (h, 0) and x
(3)

= (0, h)
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Finite Elements Step 2 - Discretize V by Vh

�
(1)

(x, y) = 1� x

h
� y

h
, �

(2)
(x, y) =

x

h
, �

(3)
(x, y) =

y

h
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Finite Elements Step 2-Global finite element space

• We have basis functions on every triangle T 2 ⌦h

• We combine them to a global function space

Vh := {�h 2 C(⌦̄) | �
���
T

2 P
1
:= span

�
�
(1)
h

,�
(2)
h

,�
(3)
h

�
}

• This is called the Lagrange basis or nodal basis. It holds

�
(i)
h

2 Vh : �
(i)
h

���
T

2 P
1
, �

(i)
h
(xj) = �ij =

(
1 i = j

0 i 6= j
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Finite Elements Step 2 - Finite Elements on quads

• Assume that the mesh elements T 2 ⌦h are quadrilaterals

• bi-linear finite elements:

• Let T be a quadrilateral with the points x
(1)

= (0, 0), x
(2)

= (h, 0), x
(3)

= (0, h),

x
(4)

= (h, h).

Finite Elements - 14/??

-



Finite Elements Step 2 - Finite Elements on quads

�
(1)

(x, y) =

⇣
1� x

h

⌘⇣
1� y

h

⌘
, �

(2)
(x, y) =

x

h

⇣
1� y

h

⌘
,

�
(3)

(x, y) =

⇣
1� x

h

⌘
y

h
, �

(4)
(x, y) =

xy

h2
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Finite Elements Step 2-global bi-linear finite elements

• The Lagrange basis of the finite element space is given as

Vh := {�h 2 C(⌦̄) | �
���
T

2 Q
1
:= span

�
�
(1)
h

,�
(2)
h

,�
(3)
h

,�
(4)
h

�
}

• The Lagrange basis or nodal basis is given by

�
(i)
h

2 Vh : �
(i)
h

���
T

2 Q
1
, �

(i)
h
(xj) = �ij =

(
1 i = j

0 i 6= j
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Finite Elements Step 3-Discretized formulation

• Starting point: weak formulation of Laplace equation

u 2 V (ru,r�) = (f,�) 8� 2 V

• We discretize the trial functions uh 2 Vh ⇢ V and the test functions �h 2 Vh ⇢ V

uh 2 Vh (ruh,r�h) = (f,�h) 8�h 2 Vh.
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Finite Elements Step 4-Linear systems of equations

uh 2 Vh (ruh,r�h) = (f,�h) 8�h 2 Vh. (1)

• The finite element space is given by a local basis

Vh = span{�(1)
h

, . . . ,�
(N)
h

}

• We split (??) into N equations

uh 2 Vh (ruh,r�
(i)
h
) = (f,�

(i)
h
) 8i = 1, . . . , N (2)

• We write the unknown solution uh 2 Vh as

uh(x, y) =

NX

j=1

uj�
(j)
h

(x, y)
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Finite Elements Step 4-Linear systems of equations

and insert this notation into (??)

NX

j=1

(r�
(j)
h

,r�
(i)
h
)uj = (f,�

(i)
h
) 8i = 1, . . . , N (3)

• This is equivalent to a linear system of equations

Au = f , Aij := (r�
(j)
h

,r�
(i)
h
), fi := (f,�

(i)
h
)
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Numerical analysis: Outline

• Step 1: Approximation estimates (qualitative; no convergence rates in terms of h

powers yet)

• Step 2: Interpolation estimates (yielding local h powers)

• Step 3: Convergence results (yielding global h powers)
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Numerical analysis: Step 1: Galerkin orthogonality

We have

(ru,r�) = (f,�) 8� 2 V,

(ruh,r�h) = (f,�h) 8�h 2 Vh.

Taking in particular only discrete test functions from Vh ⇢ V

(confroming finite elements) and subtraction of both equations yields:

Proposition 1 (Galerkin orthogonality). It holds:

(r(u� uh),�h) = 0 8�h 2 Vh,

or in the more general notation:

a(u� uh,�h) = 0 8�h 2 Vh.
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Numerical analysis: Galerkin orthogonality: illustration

Figure: Illustration of Galerin orthogonality.
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Numerical analysis: Galerkin orthogonality: proof

Proof. Taking �h 2 Vh in both previous equations yields:

(ru,r�)� (ruh,r�h) = (f,�)� (f,�h).

Taking both equations in the discrete space Vh means � := �h (is no problem since Vh ⇢ V )

and with that

(f,�h)� (f,�h) = 0.
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Numerical analysis: Best approximation

Proposition 2. For the Poisson equation the best approximation holds true

ku� uhkV = min
�h2Vh

ku� �hkV
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Numerical analysis: Step 2. Interpolation estimates

First, we need to construct an interpolation operator in order to approximate the conti-

nuous solution at certain nodes.

Definition 3 (Interpolation operator). Let ⌦ = (0, 1)
2
. A P1 interpolation operator ih :

C
1
(⌦) ! Vh is defined by

(ihv)(x) =

n+1X

j=0

v(xj)�j(x) 8v 2 H
1
.

This definition is well-defined since H
1
functions are continuous in 2D and are pointwise

defined. The interpolation ih creates a piece-wise linear function that coincides in the

support points xj with its H
1
function.
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Numerical analysis: Step 2. H
1
and L

2
estimates

Lemma 4. For a function u 2 H
2
, it exists a constant C (independent of h) such that

ku� ihukL2(T )  Ch
2k(r)

2
ukL2(T ),

|u� ihu|H1(T )  Chk(r)
2
ukL2(T ).

Lemma 5. There exists a constant C (independent of h) such that for all u 2 H
1
(⌦), it

holds

kihukH1  CkukH1(T )

and

ku� ihukL2(T )  Ch|u|H1(T ).
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Numerical analysis: Step 3. Convergence in H
1

Theorem 6. Let u 2 H
1
0 and uh 2 Vh be the solutions of the continuous and discrete

Poisson problems. Then, if u 2 H
2
(for instance when f 2 L

2
and in higher dimensions

when the domain is su�ciently smooth or polygonal and convex), we have

ku� uhkH1(⌦)  Chk(r)
2
ukL2(⌦)  ChkfkL2(⌦).

Thus the convergence in theH
1
norm (the energy norm) is linear and depends continuously

on the problem data.
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Numerical analysis: 2D Poisson: linear FEM

Level Elements DoFs h L2 err H1 err

=============================================================================

2 16 25 1.11072 0.0955104 0.510388

3 64 81 0.55536 0.0238811 0.252645

4 256 289 0.27768 0.00597095 0.126015

5 1024 1089 0.13884 0.00149279 0.0629697

6 4096 4225 0.06942 0.0003732 0.0314801

7 16384 16641 0.03471 9.33001e-05 0.0157395

8 65536 66049 0.017355 2.3325e-05 0.00786965

9 262144 263169 0.00867751 5.83126e-06 0.00393482

10 1048576 1050625 0.00433875 1.45782e-06 0.00196741

11 4194304 4198401 0.00216938 3.64448e-07 0.000983703

=============================================================================

• The elements are Ki, i = 0, . . . , n

• The DOFs represent the number of nodal points xi, i = 0, . . . , n+ 1
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Finite Elements Bi-linear finite elements for Laplace

Assembling the matrix

• We must compute the matrix entries

Aij = (r�
(j)
h

,r�
(i)
h
) =

Z

⌦
r�

(j)
h

·r�
(i)
h

dx =

X

T2⌦h

Z

T

r�
(j)
h

·r�
(i)
h

dx

• Each nodal basis function �
(i)
h

is non-zero only in the four quadrilaterals touching

xi

• The product r�
(j)
h

·r�
(i)
h

is non-zero only on elements T that have both points xi

and xj in common

bi-linear basis functions
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Finite Elements Bi-linear finite elements for Laplace
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Finite Elements Bi-linear finite elements for Laplace

xi xi+1xi�1

xi+M

xi�M xi�M+1xi�M�1

xi+M+1xi+M�1

M points

M
p
oin

ts

• Regular mesh with N = M ·M nodes

• The test function �
(i)
h

couples with itself and 8 further

testfunctions

• The matrix elements Aij must only be computed in 4

elements

Finite Elements - 31/??



Finite Elements linear finite elements-Computation

• We first compute all couplings in every element Tk for k = 1, 2, 3, 4

a
T

ij :=

Z

T

r�
(i)
h

·r�
(j)
h

dx

• Then, we put it all together in the global matrix
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Summary

linear finite elements in 2D

• We first discretize the domain, then we set up the finite element space

• We must integrate the matrix and the right hand side

H
1-error estimate:

• first order for linear finite elements

• allowing for the verification of practical results
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Summary

Thanks
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