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Otto the Great - King (from 936) and Emporor (from 962) who liked Magdeburg
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Cathedral of Magdeburg (built 1209 - 1520)
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Last project of Friedensreich Hundertwasser
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Inventor Otto von Guericke (pressure)
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Magdeburg in Germany
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Agenda

1. Introduction to PDE’s

• Models

• Types of linear PDE’s

2. The Poisson Equation

• Formulations

• Existence and regularity of solutions



The Navier-Stokes Equations for Fluid-Dynamics

div v = 0

⇢

⇣
@v + (v ·r)v

⌘
� ⇢⌫�v +rp = ⇢f

Velocity vector v and pressure p are the un-
knowns

Density ⇢ and viscosity ⌫ are parameters

G.P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011

V. John: Finite Element Methods for Incompressible Flow Problems, Springer, 2016
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Maxwell’s equation for electromagnetism

Source: Wikipedia

r · E =
⇢

✏

r ·B = 0

r⇥ E = �@B

@t

r⇥B = µ0

⇣
J + ✏

@E

@t

⌘

(1)

E is the electric field, B is the magnetic field.
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A PDE system to model infectious disease spread

I is the population with I = I(x, l, t) where t is the time, x 2 ⌦ is the space and l 2 ⌦l is a property (e.g. severity,
duration of the infection and age of the population)

Sashikumaar Ganesan, Deepak Subramani: Spatio-temporal predictive modeling framework for infectious disease
spread, Scientific Reports 2021
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Common structure

Definition A partial di↵erential equation is a di↵erential equation which computes an unkown function u : Rd !
Rn for d > 1 where various partial derivatives interact.

• Navier-Stokes Velocity
v = v(t, x) : R⇥ Rd ! Rd

and pressure
p = p(t, x) : R⇥ Rd ! Rd
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Common structure

The nabla operator r

f : Rd ! R rf(x) =

0

BBB@

@1f(x)
@2f(x)

...
@df(x)

1

CCCA

F : Rd ! Rd rF (x) =

0

BBB@

@1F1(x) @2F1(x) · · · @dF1f(x)
@1F2(x) @2F2(x) · · · @dF2f(x)

...
. . .

...
@1Fd(x) @2Fd(x) · · · @dFdf(x)

1

CCCA
,

r · F = div F

= @1F1(x) + @2F2(x) + · · ·+ @dFd(x)

f : Rd ! R �f = r ·rf(x) = @11f(x) + @22f(x) + · · ·+ @ddf(x)
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Three Types of linear PDEs

Poisson / Laplace equation A stationary equation with no distinct direction

��u(x) = f(x) in ⌦ u = g on @⌦ Elliptic PDE

One of the main ingredients in many di↵erential equation models. Usually describing di↵usive e↵ects (at
infinite extension speed)

Heat equation A nonstationary problem with no distinct spatial direction

@tu(x, t)��u(x, t) = f(x, t) in ⌦ u = g on @⌦, u = u0 for t = 0 Parabolic PDE

Describing slow di↵usion, e.g. of heat

Wave euation / Advection equation A nonstationary problem with a spatial direction of transport

@ttu(x, t)��u(x, t) = f(x, t) in ⌦ u = g on @⌦, u = u0, @tu = u1 for t = 0 Hyperbolic PDE

Describes the spatio-temporal dynamics of waves.

@tu(x, t) + ~�(x, t) ·ru(x, t) = f(x, t) in ⌦ u = g on @⌦in, u = u0, for t = 0 Hyperbolic PDE

Describes the transport in a velocity field ~�(x, t)
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• Models

• Types of linear PDE’s

2. The Poisson Equation

• Formulations

• Existence and regularity of solutions



The Poisson Equation

The classical or strong formulation of the Poisson problem on ⌦ ⇢ Rd

u 2 C
2(⌦) \ C(⌦̄) ��u(x) = f(x) in ⌦, u = 0 on @⌦ (2)

Lemma (variational problem) Each solution to (2) is also solution to the variational problem

u 2 V := {� 2 C
1(⌦) \ C(⌦̄) : � = 0 on @⌦}

Z

⌦
ru(x) ·r�(x) dx

Z

⌦
f(x)�(x) dx 8� 2 V (3)

The variational formulation (3) is equivalent to the minimization problem

u 2 V := {� 2 C
1(⌦) \ C(⌦̄) : E(u)  E(�) :=

1

2

Z

⌦
|r�(x)|2 dx�

Z

⌦
f(x)�(x) dx 8� 2 V (4)

If a solution u 2 V satisfies the regularity u 2 C
2(⌦) it is also solution to (2)

Proof ...
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(2) = (3)
&Proofletue(2(r)n((z) -

(2)
-Su = f / yeVEvetions
# v =0

Frdamentamario on dr]
-sure = fy /S : "

3 #
-Jorydx = (f - edx

ut Vo
M r U - is enough

Samaydx-Juds =Sdydx (3)r Out



(3) = (4)

We find the Min of Ely) =ElloyF
- (6 , 4)

E(u +y) - E(u) = (11+(u+y),
- (115/

-  upei + 16,4)
= (ou

,+y) - 16, 3) + 111ay12
um

= llogi= 0
4 solves (3) =>

(ou , +y) = (d , y) E(u+y)E() FY
= u is Min (4)



(4) =) (3)

e is Min. = Fytto FteR
E(u+ ty) - E(u) = 0

previous
Slide :

E(u+ ty) - Elm) = E10y+ to/u, +y) - 1,+)) = 0

t = 0 = (ou,+y) - 12, 4)=y
- 10 => (m ,4y) - 16,y)y
= 20

2

- lloyl = (ou ,py)-16, y) = 104/
t +o =(ou ,+y) = (d, 4) (3) #



Poisson Equation - Existence of the minimization problem

u 2 V := {� 2 C
1(⌦) \ C(⌦̄) : E(u)  E(�) :=

1

2

Z

⌦
|r�(x)|2 dx�

Z

⌦
f(x)�(x) dx 8� 2 V (5)

Lemma (Existence)

If the domain ⌦ has su�cient regularity, there is a unique solution to every f 2 L
2(⌦). It holds

u 2 H
1
0 (⌦) : {� 2 L

2(⌦), it exists a Cauchy-Sequence uk 2 V \ L
2(⌦) with ku� ukkL2 ! 0

such thatkr(uk � ul)k ! 0}

Proof ...

(u, v) :=

Z

⌦
u(x)v(x) dx, (ru,rv) :=

Z

⌦
ru(x) ·rv(x) dx.
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u + Vo E(al = Ely) = EJloyidx-Jf-ydx
(i) Show Ely) >-a

r

V
Ely) = Ella +iR- (f , t)

Notation
= Ellep-11811 - 11 /l

b (f, y) = J8 . ydx
~

a

= Else-fll: 11el
E= 1

r

- ElleyRoElloyIR-fR -sincareunqualitya
=-A

Young's inequality
a
,
beR

,
as o

Iall = op 11 Dull

a .b+



d = int E(y) = - c
yeVo

(11) There is asequence Ele
keI

such that Elea-> d
k -> a

Show that Mi is a Cauchy-sequence
114(MK-MelR -> 0 for 11 -> a

↓dea Elliee)= 110 mi del Il

-(f
, Mi ve)



Up is Cauchy

115(M-Melit =2 d+ 211smal- 14/Mitua)12

Parallelogram-= GITMP+211The-4115(Mete)I

Identity =4Ella +4 f
,e

+ 4 E(me) +4(5, ue)

-BE(MM)-f, Me

(=4E(m)+4E/me)-rEl-0
k
,
l-c

Luke jeze umm
4d 4d - 8d

=MkCauchy



(3)

=> there exists a limit up- u

with u = H!(1) =

3 yeC2 : there exists a Coochy
sequence yet Vo with

114(y-y = 03



Boundary conditions

Dirichlet Problem Find u 2 H
1(⌦) such that

��u = f in ⌦, u = g on @⌦

Neumann Problem Find u 2 H
1(⌦) such that

��u = f in ⌦, @nu = g on @⌦

Robin Problem Find u 2 H
1(⌦) such that

��u = f in ⌦, ↵u+ @nu = g on @⌦, ↵ > 0
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Non-homogenous Dirichlet Problem - A trick for numerics

Find u : ⌦ ! R such that
��u = f in ⌦, u = g on @⌦

Construct uD 2 H
1(⌦) such that

uD = g on @⌦

Split the solution
u = uD + u0, u0 2 H

1
0 (⌦), (ru,r�) = (ruD,r�) + (ru0,r�).

Non-homogenous Dirichlet problem Find u0 2 H
1
0 (⌦)

(ru0,r�) = (f,�)� (ruD,r�) 8� 2 H
1
0 (⌦)

• Numerically, this trick will be used in the Python classes in the afternoon

• Theoretical problem: Where do we get the extension of the boundary values g to an H
1-function uD?

Wloka: Partial Di↵erential Equations, Cambridge University Press, 1987

Rudin: Functional Analysis, McGraw-Hill, 1991
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Regularity of solutions

!Warning! The function space H
1
is special

• H
1 functions must not have a “classical derivative”

• Example: absolute value
|x| 2 H

1(I), I = (�1, 1)

• In R, H1 functions are continuous

• In Rd for d � 2 this is not necessarily true
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Regularity of solutions

C
1(⌦) 3 vk = log

⇣
log

⇣ 1

|x|+ 1
k

⌘
+ 1

⌘
! log

⇣
log

⇣ 1

|x|

⌘
+ 1

⌘
=: v 2 H

1(⌦)

It holds v(x) ! 1 for x ! 0 but Z

x2+y2<1
|rv(x, y)|2 dxdy = 2⇡

k=1 k=10 k=100
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Regularity of solutions - E↵ect of the boundary

Definition (Sobolev Spaces) We define the function spaces

H
m(⌦) = {� 2 L

2(⌦) krk
�kL2(⌦) < 1 k = 1, . . . ,m}

Lemma (Regularity) If
f 2 H

m(⌦)

and if the domain ⌦ has a boundary that has the regularity C
k+2, the solution has the regularity

u 2 H
m+2(⌦)

Special case: If f 2 L
2(⌦) and ⌦ is a polygonal and convex domain it holds

u 2 H
2(⌦)

and
kr2

uk  csk�uk = kfk
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