
Gascoigne3D
May 24, 2020

Thomas Richter

thomas.richter@ovgu.de

https://www.math.uni-magdeburg.de/~richter/gascoigne

thomas.richter@ovgu.de
https://www.math.uni-magdeburg.de/~richter/gascoigne

(c) Thomas Richter and the Gascoigne3D authors, 2020 2

Contents

1 Introduction 5
1.1 Installation . 5
1.2 A minimal example solving a partial differential equation 7

2 The parameter file 13

3 Description of the problem 15
3.1 The right hand side . 15
3.2 Boundary Data . 16

3.2.1 Dirichlet boundary data . 17
3.2.2 Neumann conditions . 18
3.2.3 Robin conditions . 19

3.3 Definition of the partial differential equations 19
3.3.1 Nonlinear equations . 21
3.3.2 Equations on the boundary & Robin boundary data 22

3.4 Exact Solution and Evaluation of Errors . 23
3.5 Systems of partial differential equations . 24

3.5.1 Modification of the right hand side . 24
3.5.2 Modification of Dirichlet data . 25
3.5.3 Modification for the equation, form and matrix 25

4 Time dependent problems 27
4.1 Time discretization of the heat equation . 27
4.2 Time dependent problem data . 30
4.3 Non standard time-discretizations . 30

5 Mesh handling 33
5.1 Definition of coarse meshes . 33
5.2 Curved boundaries . 35
5.3 Adaptive refinement of meshes . 37

5.3.1 Estimating the Energy-Error . 37
5.3.2 Picking Nodes for Refinement . 38

6 Flow problems and stabilization 39
6.1 The function point . 39
6.2 Stabilization of the Stokes system . 39
6.3 Stabilization of convective terms . 40
6.4 LPS Stabilization . 41

3

Contents Contents

(c) Thomas Richter and the Gascoigne3D authors, 2020 4

1 Introduction

When referring to files, the following directories are used:

HOME Your home directory

GAS The base-directory of Gascoigne. For the workshop:

File: /home/people/gascoigne/Software/src-neu/Gascoigne/

GAS/src The source- and include-files of Gascoigne. For the workshop:

File: /home/people/gascoigne/Software/src-neu/Gascoigne/src

Gascoigne is a software-library written in C++. To solve a partial differential equation with
Gascoigne, a small program has to be written using the routines provided by Gascoigne. All
functionality is gathered in the library-file File: libGascoigneStd . This library is linked
to every application.

1.1 Installation

In this section we explain the usage of Gascoigne as a library for own applications.

Gascoigne requires a configuration file:

File: HOME/.gascoignerc

Here, some setting like “where is Gascoigne”, “where are the libraries” are given. The
minimal file looks like:

1 ###
2 SET(GASCOIGNE STD ”/home/ people / gasco igne / Software / src−neu/ Gascoigne ”)
3

4 ###
5 # Gascoigne L i b r a r i e s & B in a r i e s
6 SET(GASCOIGNE LIBRARY OUTPUT PATH ”/home/ people / gasco igne / Software / x86 64 / l i b ”)
7 SET(GASCOIGNE EXECUTABLE OUTPUT PATH ” . ”)

You need a file like this in the home directory. To build an application using Gascoigne at
least two files and directories are required:

File: TEST/bin/
File: TEST/src/main.cc

5

1.1. INSTALLATION CHAPTER 1. INTRODUCTION

File: TEST/src/CMakeLists.txt

The first directory will be used to store the executable file for this application. The other
two files are the source code of the application and a file to control the compilation of the
application. An example of it could look like:

File: TEST/src/CMakeLists.txt

1 INCLUDE($ENV{HOME}/ . ga s co i gne r c)
2

3 INCLUDE(${GASCOIGNE STD}/CMakeGlobal . txt)
4 LINK LIBRARIES(${GASCOIGNE LIBS})
5

6 ADD EXECUTABLE(” Test ” main . cc)

In the first line, the user’s config file is read. The following two lines set global parame-
ters for Gascoigne. The variable GASCOIGNE STD is provided in the config-file, the variable
GASCOIGNE LIBS is given in a central Gascoigne-config file. The last line indicates the name
of the application: Test, and lists all code-files to be compiled into the application.

A minimal example for a code-file (it does not really use Gascoigne) looks like this:

File: TEST/src/main.cc

1 #include <iostream>
2 #include ” s td loop . h”
3

4 int main (int argc , char∗∗ argv)
5 {
6 std : : cout << ” Create a Gascoigne Loop ! ” << std : : endl ;
7 Gascoigne : : StdLoop Loop ;
8 }

For building the application we use the program cmake to generate Makefiles. In the directory
TEST/bin/ type:

1 cmake . . / s r c
2 make

The first line creates the File: TEST/bin/Makefile . It reads File: CMakeLists.txt to
put everything together. The second command starts the compilation and linking of the
application and if everything works out, File: TEST/bin/Test should be the executable
file which then can be started.

The command cmake is only needed to create new Makefiles. This is necessary, if new
code-files are added to the application. If only source code is changed, e.g. the file File:
TEST/src/main.cc , you only need to call make in the directory TEST/bin.

(c) Thomas Richter and the Gascoigne3D authors, 2020 6

CHAPTER 1. INTRODUCTION1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATION

1.2 A minimal example solving a partial differential equation

Assume there exists a directory FIRSTEXAMPLE with sub-dirs FIRSTEXAMPLE/bin and FIRSTEXAMPLE/src.
In the src-directory you need the files File: main.cc and File: CMakeLists.txt . in the
bin-directory you call cmake ../src for configuration and then make for compilation.

File: FIRSTEXAMPLE/src/main.cc

1 #include ” s td loop . h”
2 #include ” prob l emdesc r ip to rbase . h”
3 #include ” cons tant r i gh thands ide . h”
4 #include ” z e r o d i r i c h l e t d a t a . h”
5 #include ” l ap l a c e2d . h”
6

7 using namespace Gascoigne ;
8

9 class Problem : public ProblemDescr iptorBase
10 {
11 public :
12 std : : s t r i n g GetName () const { return ” F i r s t Problem” ; }
13 void B a s i c I n i t (const ParamFile∗ paramf i l e)
14 {
15 GetEquationPointer () = new Laplace2d ;
16 GetRightHandSidePointer () = new OneRightHandSideData (1) ;
17 GetDir i ch l e tDataPo inter () = new ZeroDir i ch l e tData ;
18

19 ProblemDescr iptorBase : : B a s i c I n i t (paramf i l e) ;
20 }
21 } ;
22

23 int main (int argc , char ∗∗ argv)
24 {
25 ParamFile paramf i l e (” f i r s t . param”) ;
26 i f (argc>1) paramf i l e . SetName (argv [1]) ;
27

28 Problem PD;
29 PD. B a s i c I n i t (& paramf i l e) ;
30

31 ProblemContainer PC;
32 PC. AddProblem (” l a p l a c e ” , &PD) ;
33

34 StdLoop loop ;
35 loop . B a s i c I n i t (¶mf i l e , &PC) ;
36 loop . run (” l a p l a c e ”) ;
37 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 7

1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATIONCHAPTER 1. INTRODUCTION

The Problem

Here, the problem to be solved is defined. The Problem gathers all information on the
problem to be solved. This is: which pde, what kind of boundary data, what is the right
hand side, and so on.

By PD.BasicInit() we initialize the problem (will be described later on). This problem is
then added to another class, the ProblemContainer. Here, we can gather different problems,
each together with a keyword, which is laplace in this case. There are possible applications
where it is necessary to switch between different problems in the same program.

The problem sets pointers to a large variety of classes. Here, we define the equation to be of
type Laplace2d, an implementation of the two dimensional Laplace equation. For right hand
side and Dirichlet data we define self written classes (will be explained later). In Gascoigne
a very large set of parameters can be set for a problem, all in form of pointers. However these
three classes, Equation, RightHandSide and DirichletData are necessary for every instance
of Gascoigne. The class Problem is derived from the base-class ProblemDescriptorBase:

File: GAS/src/Problem/problemdescriptorbase.h

The equation Laplace2d is part of the Gascoigne-Library:

File: GAS/src/Problem/laplace2d.h

This is explained in detail in Section 3.

The Loop

Then, a Loop is specified, the loop is the class controlling what is happening at run-time.
and what Gascoigne is doing: this is usually a sequence like: initialize, solve a pde, write
the solution to the disk, evaluate functionals, compute errors, refine the mesh and start over.
In BasicInit() we initialize the most basic structure and read data from parameter files.
Here we also pass the ProblemContainer to the different instances.

We start the solving by calling loop.run("laplace"), where the keyword laplace indicates
what problem so solve.

File: FIRSTEXAMPLE/src/loop.cc

First, in run(), we define two vectors u,f for storing the solution and the right hand side.
Then, in the for-loop we initialize the problem, solve the problem, write out the solution and
refine the mesh. This is very typical for every program run, since for a reliable simulation it
is necessary to observe the convergence of the solution on a sequence of meshes. Next, we
have a closer look at every step of the inner loop:

1 GetMult iLeve lSo lver ()−>ReIn i t (prob lemlabe l) ;
2 GetMult iLeve lSo lver ()−>ReInitVector (u) ;
3 GetMult iLeve lSo lver ()−>ReInitVector (f) ;
4

5 GetSo lve r In fo s ()−>GetNLInfo () . c o n t r o l () . matrixmustbebui ld () = 1 ;

(c) Thomas Richter and the Gascoigne3D authors, 2020 8

CHAPTER 1. INTRODUCTION1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATION

The first line initializes the basic ingredients of Gascoigne. In particular, we pass the equa-
tion to be solved and all the necessary data to different parts like “Solver”, “Discretization”.
Then, by GetMultiLevelSolver()->ReInitVector(u) we initialize the vector on the cur-
rent mesh. This basically means that we resize the vector to match the number of degrees
of freedom (which changes with the mesh-size).

Finally, in the last line we tell Gascoigne to assemble the system matrix. This is necessary
whenever the system matrix changes, which is the case if we have a new mesh, or if the
matrix depends on the solution u itself. This will be discussed when dealing with nonlinear
problems.

File: Template1/src/loop.cc

1 Solve (u , f , ” Resu l t s /u”) ;
2 GetMeshAgent()−> g l o b a l r e f i n e () ;

By calling Solve(u,f) we solve the PDE. The subsequent line refines the mesh.

File: Template1/src/loop.cc

1 s t r i n g Loop : : So lve (V e c t o r I n t e r f a c e& u , V e c t o r I n t e r f a c e& f , s t r i n g
2 name)
3 {
4 GetMult iLeve lSo lver ()−>GetSolver()−>Zero (f) ;
5 GetMult iLeve lSo lver ()−>GetSolver()−>Rhs(f) ;
6

7 GetMult iLeve lSo lver ()−>GetSolver()−>SetBoundaryVector (f) ;
8 GetMult iLeve lSo lver ()−>GetSolver()−>SetBoundaryVector (u) ;
9

10 s t r i n g s t a t u s = GetMult iLeve lSo lver ()−>
11 Solve (u , f , GetSo lve r In fo s ()−>GetNLInfo ()) ;
12

13 Output (u , name) ;
14 }

Here, we fist assemble the right hand side f of our problem. Then, we need to initialize
Dirichlet boundary values. Finally, we tell the multigrid solver to solve the equation.

In the last line, we write the solution into a file for visualization.

Output of Gascoigne

After starting the code, Gascoigne first prints out some information on the current mesh,
solver, Discretization and problem data.

Then, for every iteration of the inner loop the output looks like:

(c) Thomas Richter and the Gascoigne3D authors, 2020 9

1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATIONCHAPTER 1. INTRODUCTION

...

================== 2 ================ [l,n,c] 5 1089 1024

0: 9.77e-04

M 1: 7.73e-09 [0.00 0.00] - 6.26e-08 [0.012] {3}

[u.00002.vtk]

...

In the first line the current iteration count (2) , the number of mesh-refinemenet levels (5),
the number of mesh nodes (1089) and the number of mesh elements (quads) (1024) is given.

Then, Gascoigne prints control and stastic data for the solution of the algebraic systems.
Gascoigne solves every equation with a Newton-method, even linear ones. This is for reasons
of simplicity as well as having a defect correction method for a better treatment of roundoff
errors. On the left side of the output the convergence history of the newton method is
printed. Here we only need one Newton step. Before this step, the residual of the equation
was 9.77e−4, after this one step the residual was reduced to 7.73e−9. The letter M indicates
that Gascoigne assembled a new system matrix in this step. The folling two numbers [0.00
0.00] indicate the convergance rates of the newton iteration by printing the factor, by which
the residual was reduced. We only print the first 2 digits, hence Gascoigne gives a 0. The
first number is the reduction rate in the current step, the second number is the average
reduction rate over all Newton steps.

On the right side, the convergence history of the linear multigrid solver is printed. Here,
the values indicate that in newton step 1 we needed {3} iteration of the multigrid solver. In
every of these three steps the error was reduced by a factor of [0.012] and after these three
steps the residual had the value 6.26e-08.

Finally Gascoigne prints the name of the output file. You can visualize it by calling
visusimple u.00002.vtk in the terminal window.

Configuration and Compilation

For configuration and compilation you need to specify the cmake-file File: FIRSTEXAMPLE/src/CMakeLists.txt
:

1 INCLUDE($ENV{HOME}/ . ga s co i gne r c)
2 INCLUDE(${GASCOIGNE STD}/CMakeGlobal . txt)
3

4 LINK LIBRARIES(${GASCOIGNE LIBS})
5

6 ADD EXECUTABLE(” FirstExample ” main . cc)

We tell cmake to produce an executable named File: FirstExample which includes all the
code from File: main.cc . Further, we link all functionality from the libraries specified in
${GASCOIGNE LIBS}.

(c) Thomas Richter and the Gascoigne3D authors, 2020 10

CHAPTER 1. INTRODUCTION1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATION

In the directory FIRSTEXAMPLE/bin you need to call cmake ../src for the first time and then
make every time you need to recompile. The program is started by calling ../bin/FirstExample
first.param in the directory FIRSTEXAMPLE/src.

The parameter file

In this directory you can also specify the parameter-file
File: FIRSTEXAMPLE/src/first.param

1 //Block Loop
2 n i t e r 5
3

4 //Block Mesh
5 dimension 2
6 gridname square . inp
7 p r e r e f i n e 3
8

9 //Block BoundaryManager
10 d i r i c h l e t 4 1 2 3 4
11

12 d i r i ch l e t comp 1 1 0
13 d i r i ch l e t comp 2 1 0
14 d i r i ch l e t comp 3 1 0
15 d i r i ch l e t comp 4 1 0
16

17 //Block Nix

This minimal example tells Gascoigne the dimension of the problem, which domain to use,
where to apply boundary data.

When starting the program, Gascoigne reads in a parameter file. Here, different paramters
controlling the behaviour of the code can be supplied. For instance in //Block Loop of this
file you can change the values of niter, which tells, how many times Gascoigne should solve
the equation and refine the mesh.

In //Block Mesh we supply the mesh file as well as the number of refinements steps which
are performed before solving the first problem. You can change this parameter in prerefine.

(c) Thomas Richter and the Gascoigne3D authors, 2020 11

1.2. A MINIMAL EXAMPLE SOLVING A PARTIAL DIFFERENTIAL EQUATIONCHAPTER 1. INTRODUCTION

(c) Thomas Richter and the Gascoigne3D authors, 2020 12

2 The parameter file

Gascoigne can process a parameter file during runtime. See File: TEST/src/test.param

. Here some parameters and settings are stored which can be changed at run-time without
need for recompilation of the program. For the file to be processed, go to the directory
containing the parameter file (that is TEST/src here) and call

1 . . / bin / Test t e s t . param

The data in the param-file is organized in blocks which are read at different points of the
code. A sample parameter file could look like: File: TEST/src/test.param

1 //Block S e t t i n g s
2 month 10
3 year 2009
4 name FirstTestOfGasco igne
5

6 //Block So l v e r
7 . . .
8

9 //Block Nix

Each block has to be initialized by the line

1 //Block <blockname>

Note that the slashes in front of the blocks are not treated as a comment here. The parameter
file has to end with a dummy-block, e.g. //Block Nix.

In Gascoigne, the parameter file is stored in the class ParamFile. Reading values from
the parameter-file is done using the classes FileScanner and DataFormatHandler. These
classes are declared in the header File: filescanner.h . Here is a modified File: main.cc
reading values from the parameter file:

File: TEST/src/main.cc

1 #include <iostream>
2 #include ” s td loop . h”
3 #include ” f i l e s c a n n e r . h”
4 #include ” paramf i l e . h”
5

6 using namespace Gascoigne ;
7 using namespace std ;

13

CHAPTER 2. THE PARAMETER FILE

8

9 int main (int argc , char∗∗ argv)
10 {
11 i f (argc<2)
12 { c e r r << ” c a l l : Test paramf i l e ! ! ” << endl ;
13 abort () ; }
14 ParamFile paramf i l e ;
15 paramf i l e . SetName (argv [1]) ;
16

17 int month , year ;
18 s t r i n g name ;
19 DataFormatHandler DFH;
20 DFH. i n s e r t (”month” ,&month) ;
21 DFH. i n s e r t (” year ” , &year , 2009) ;
22 DFH. i n s e r t (”name” ,&name , ” t e s t ”) ;
23 Fi l eScanner FS(DFH, ¶mf i l e , ” S e t t i n g s ”) ;
24 cout << month << ”/” << year << ”\ t ” << name << endl ;
25 }

To read in one block, we first initialize a DataFormatHandler (line 19). Next, we tell the
DataFormatHandler which keywords to look for using the function insert. The first ar-
gument of the insert function is the keyword we are searching, the second argument the
variable that its value will be written to. Optionally, we can specify a default value as a
third argument which is used if the keyword is not present in the parameter file. Finally, we
initialize an object FileScanner passing the DataFormatHandler, a parameter file and the
block to be read. Note that only this block is read!

(c) Thomas Richter and the Gascoigne3D authors, 2020 14

3 Description of the problem

File: GAS/src/Problem/problemdescriptorbase.h

The class ProblemDescriptor provides all information necessary to set up an application.
This includes all problem data like: equation, boundary data, right hand side, initial condi-
tion, etc. Most important function is ProblemDescriptor::BasicInit(), where the prob-
lem is defined by setting pointers to the describing classes. A minimal example:

1 void LocalProblemDescr iptor : : B a s i c I n i t (const ParamFile∗ pf)
2 {
3 GetEquationPointer () = new LocalEquation ;
4 GetRightHandSidePointer () = new LocalRightHandSide ;
5 GetDir i ch l e tDataPo inter () = new Loca lD i r i ch l e tData ;
6

7 ProblemDescr iptorBase : : B a s i c I n i t (pf) ;
8 }

For an problem to be well defined, at least the equation and the Dirichlet data have to be spec-
ified. All possible pointers to be set are listed in File: GAS/src/Problem/problemdescriptorbase.h

In the following we describe the classes needed to specify the most common ingredients of a
problem.

3.1 The right hand side

File: GAS/src/Interface/domainrighthandside.h

The interface class to specify a function f : Ω → R as right hand side for the problem is
DomainRightHandSide. Let f(x, y) = sin(x) cos(y) be the right hand side:

1 class LocalRightHandSide : public DomainRightHandSide
2 {
3 public :
4 int GetNcomp () const { return 1 ; }
5

6 std : : s t r i n g GetName () const { return ” Local Right Hand Side ” ; }
7

8 double operator () (int c , const Vertex2d& v) const
9 {

15

3.2. BOUNDARY DATA CHAPTER 3. DESCRIPTION OF THE PROBLEM

10 return s i n (v . x ()) ∗ cos (v . y ()) ;
11 }
12 }

Most important function of this class is double operator()(int c, const Vertex2d& v)

const, here, the value of the right hand side function f at point v ∈ Ω is returned. The
class Vertex2d is explained in File: GAS/src/Common/vertex.h. For three dimensional
problems the operator double operator()(int c, const Vertex3d& v) const has to be
written.

The second parameter int c as well as the function int GetNcomp() const will be ex-
plained in Section 3.5 and can be ignored here.

A function called GetName() is necessary in every class used in the ProblemDescriptor. It
just needs to be declared to provide a label.

3.2 Boundary Data

Every boundary part of the mesh is given a certain color, see Section 5. You can visualize
meshes (inp-files) with the program visusimple. Here you can also look at the boundary
data, use Select->Scalar. In the parameter file it is specified, whether a boundary color is
used for Dirichlet boundary values or for Neumann (or Robin) boundary values. If different
parts of the boundary shall have different boundary type, multiple boundary colors have to
be used.

To assign Dirichlet boundary condition to a certain boundary color, the parameter file has
to contain:

1 //Block BoundaryManager
2 d i r i c h l e t 2 4 8
3 d i r i ch l e t comp 4 1 0
4 d i r i ch l e t comp 8 1 0

This definition lets the boundaries with colors 4 and 8 have Dirichlet condition. The param-
eter dirichlet is given as a vector: the first value is the number of Dirichlet colors, then
the colors follow. If only the color 4 is picked for Dirichlet it would look like:

1 //Block BoundaryManager
2 d i r i c h l e t 1 4
3 d i r i ch l e t comp 4 1 0

The second parameter dirichletcomp needs to be given for every boundary color used
with Dirichlet values. For every color we choose the solution components to be used for
Dirichlet colors. These values are again given as vectors: First the color is specified, then
the number of solution components that have Dirichlet values on this color. Finally the
solution components are listed. For scalar equations with only one component, the last

(c) Thomas Richter and the Gascoigne3D authors, 2020 16

CHAPTER 3. DESCRIPTION OF THE PROBLEM 3.2. BOUNDARY DATA

two values are always 1 0. See Section 3.5 for using Dirichlet colors for systems of partial
differential equations with more than one solution component.

Every boundary color, that is not listed as Dirichlet boundary uses natural boundary condi-
tions given due to integration by parts. For the Laplace Equation

(−∆u, φ)Ω + 〈∂nu, φ〉Γ = (∇u,∇φ)Ω,

this is the homogeneous Neumann condition ∂nu = 0. How to use non-homogeneous Neu-
mann is explained in Section 3.2.2 and details on Robin-boundary conditions are given in
Section 3.2.3.

3.2.1 Dirichlet boundary data

File: src/Problem/diricheltdata.h

Assume, that the colors 4 and 8 are picked as Dirichlet boundary colors in the parameter
file.

The Dirichlet values to be used for the boundaries with colors specified in the parameter file
are described in the class DirichletData, see File: GAS/src/Interface/dirichletdata.h

1

2 #include ” d i r i c h l e t d a t a . h”
3

4 class Loca lD i r i ch l e tData : public Dir i ch l e tData
5 {
6 public :
7 std : : s t r i n g GetName () const { return ” Local D i r i c h l e t Data ; ” }
8 void operator () (DoubleVector& b , const Vertex2d& v , int c o l) const
9 {

10 b . zero () ;
11 i f (c o l==4) b [0] = 0 . 0 ;
12 i f (c o l==8) b [0] = v . x () + v . y () ;
13 }
14 }

This example sets the boundary value to zero on the boundary with color 4 and to the
function g(x, y) = x + y on color 8. The values are not returned as in the case of the right
hand side, but written in the vector b[comp]. comp is the number of the equation (if dealing
with systems). For scalar pde’s this is always b[0]. The parameter Vertex2d& v gives the
coordinate and the parameter col gives the color of the node to set Dirichlet values. In three
dimensions, the same operator exists using a Vertex3d& v to indicate the coordinate. In the
ProblemDescriptor we need to set a pointer to this new class: File: TEST/src/problem.h

1 class ProblemDescr iptor : public ProblemDescr iptorBase
2 {
3 // . . .

(c) Thomas Richter and the Gascoigne3D authors, 2020 17

3.2. BOUNDARY DATA CHAPTER 3. DESCRIPTION OF THE PROBLEM

4 void B a s i c I n i t (const ParamFile∗ paramf i l e)
5 {
6 // . . .
7 GetDir i ch l e tDataPo inter () =
8 new Loca lD i r i ch l e tData ;
9 }

10 // . . .
11 } ;

3.2.2 Neumann conditions

Non homogenous Neumann conditions of the type

〈∂nu, φ〉ΓN = 〈gN , φ〉ΓN ,

require some additional right hand side data. In Gascoigne, this Neumann right hand side is
derived from the class BoundaryRightHandSide specified in File: GAS/src/Interface/boundaryrighthandside.h
. An example for a 2d scalar problem is given by

1 #inc lude ” boundaryr ighthands ide . h”
2

3 class LocalBoundaryRightHandSide : public BoundaryRightHandSide
4 {
5 public :
6 int GetNcomp () const { return 1 ; }
7 s t r i n g GetName () const { return ” Local B−RHS” ; }
8

9 double operator () (int c , const Vertex2d& v , const Vertex2d& n ,
10 int c o l o r) const
11 {
12 i f (c o l o r ==0) return 1 . 0 ;
13 i f (c o l o r ==1) return v . x () ∗ n . x () + v . y () ∗ n . y () ;
14 }
15

16 } ;

Here we define Neumann data on two different parts of the boundary with colors 0 and 1:

g0(x) = 1, g1(x) = n(x) · x,

where n(x) is the outward unit-normal vector in the point x.

Boundary right hand sides need to be specified in the parameter file in //Block BoundaryManager.
Otherwise these boundary terms are not taken into account:

File: TEST/src/test.param

(c) Thomas Richter and the Gascoigne3D authors, 2020 18

CHAPTER 3. DESCRIPTION OF THE PROBLEM3.3. DEFINITION OF THE PARTIAL DIFFERENTIAL EQUATIONS

1 //Block BoundaryManager
2 . . .
3 . . // . s t u f f f o r D i r i c h l e t boundary
4 . . .
5 r i gh thands ide 2 0 1

The new parameter righthandside specifies a vector. Here it tells Gascoigne that 2 bound-
ary colors have Neumann data. These are the colors 0 and 1. In the ProblemDescriptor

we need to set a pointer to this new class: File: TEST/src/problem.h

1 class ProblemDescr iptor : public ProblemDescr iptorBase
2 {
3 // . . .
4 void B a s i c I n i t (const ParamFile∗ paramf i l e)
5 {
6 // . . .
7 GetBoundaryRightHandSidePointer () =
8 new LocalBoundaryRightHandSide ;
9 }

10 // . . .
11 } ;

3.2.3 Robin conditions

Robin boundary data includes very general conditions to be fulfilled on the boundary of the
domain. We can have:

〈G(u), φ〉ΓR = 0,

where G(·) can be some operator, e.g. G(u) = ∂nu + u2. Hence, Robin boundary data
means that we have an additional equation that is valid on the boundary. We will explain
this concept in detail after explaining how to specify equations. See Section 3.3.2.

3.3 Definition of the partial differential equations

File: GAS/src/Interface/equation.h

The pde to be solved is given in the weak formulation

a(u)(φ) = (f, φ) ∀φ,

where a(·)(·) is a semi-linear form, linear in the second argument. Gascoigne solves every
problem with a Newton method (also linear problems). With an initial guess u0 updates

a′(uk)(wk, φ) = (f, φ)− a(uk)(φ) ∀φ, uk+1 := uk + wk,

(c) Thomas Richter and the Gascoigne3D authors, 2020 19

3.3. DEFINITION OF THE PARTIAL DIFFERENTIAL EQUATIONSCHAPTER 3. DESCRIPTION OF THE PROBLEM

are searched. The Jacobi matrix is the matrix of the directional derivatives of a(·)(·) in the
point uk and defines as

a′(u)(w, φ) :=
d

ds
a(u+ sw)(φ)

∣∣∣∣∣
s=0

.

For linear problems, this is
a(u)(w, φ) = a(w)(φ).

To solve, Gascoigne needs to know about the right hand side (f, φ) (see Section 3.1), the
form a(uk)(φ) and its derivative a′(uk)(wk, φ). Form and derivative are given in the class
Equation:

1 class LocalEquation : public Equation
2 {
3 public :
4

5 int GetNcomp () const ;
6 s t r i n g GetName () const ;
7

8 void po int (double h , const Vertex2d& v) const ;
9 void po int (double h , const Vertex3d& v) const ;

10

11 void Form(V e c t o r I t e r a t o r b , const FemFunction& U,
12 TestFunction& N) const ;
13 void Matrix (EntryMatrix& A, const FemFunction& U,
14 const TestFunction& M, const TestFunction& N) const ;
15

16 } ;

The first function GetNcomp() returns the number of solution unknowns for systems of partial
differential equations. For scalar equations, this function returns 1. GetName() is a label for
the equation. The most important functions are Form(b,U,N), which defines a(u)(φ) and
Matrix(A,U,M,N) which gives the derivative a′(u)(w, φ). The parameters b and A are the
return values, U is the last approximation u, N is the test-function φ and M is the direction
w. The function point() is meant to set parameters depending on the mesh size h or on
the coordinate v. point is called before each call of Form() or Matrix() and can be used
to set local variables.

For the Laplace equation, the implementation is given by

1 void Form(V e c t o r I t e r a t o r b , const FemFunction& U,
2 const , TestFunction& N) const
3 {
4 b [0] += U[0] . x () ∗ N. x () + U[0] . y () ∗ N. y () ;
5 }
6

7 void Matrix (EntryMatrix& A, const FemFunction& U,
8 const TestFunction& M, const TestFunction& N) const

(c) Thomas Richter and the Gascoigne3D authors, 2020 20

CHAPTER 3. DESCRIPTION OF THE PROBLEM3.3. DEFINITION OF THE PARTIAL DIFFERENTIAL EQUATIONS

9 {
10 A(0 ,0) += M. x () ∗ N. x () + M. y () ∗ N. y () ;
11 }

The class TestFunction describes the values and derivatives of a discrete function in a
certain point. By N.m() the value is accessed, by N.x(), N.y() and N.z() the directional
derivatives. The class FemFunction is a vector of TestFunction and used for the solution
function uh. For systems of partial differential equations, the index gives the number of the
solution component. For scalar equations, it is always U[0].m().

3.3.1 Nonlinear equations

As example we now consider the nonlinear partial differential equation given by

a(u)(φ) = (∇u,∇φ) + (〈∇u,∇u〉, φ), 〈x, y〉 :=
∑

xiyi.

The form is given by

1 void Form(V e c t o r I t e r a t o r b , const FemFunction& U,
2 const , TestFunction& N) const
3 {
4 b [0] += U[0] . x () ∗ N. x () + U[0] . y () ∗ N. y ()
5 + (U [0] . x () ∗ U[0] . x () + U [0] . y () ∗ U[0] . y ()) ∗ N.m() ;
6 }

To define the matrix we first build the derivative:

a′(u)(w, φ) =
d

ds
a(u+ sw)(φ)|s=0

=

(
d

ds
∇(u+ sw),∇φ

)
+

(
d

ds
〈∇(u+ sw),∇(u+ sw)〉, φ

)
|s=0

= (∇w,∇φ) + (〈∇(u+ sw),∇w〉, φ) + (〈∇w,∇(u+ sw)〉, φ) |s=0

= (∇w,∇φ) + 2(〈∇u,∇w〉, φ).

The matrix function is then given by

1 void Matrix (EntryMatrix& A, const FemFunction& U,
2 const TestFunction& M, const TestFunction& N) const
3 {
4 A(0 ,0) += M. x () ∗ N. x () + M. y () ∗ N. y () ;
5 A(0 ,0) += 2 .0 ∗ (U [0] . x () ∗ M. x () + U [0] . y () ∗ M. y) ∗ N.m() ;
6 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 21

3.3. DEFINITION OF THE PARTIAL DIFFERENTIAL EQUATIONSCHAPTER 3. DESCRIPTION OF THE PROBLEM

3.3.2 Equations on the boundary & Robin boundary data

Robin boundary data is realized by setting an equation on the boundary. First, we need to
tell Gascoigne to include boundary equations. Herefore, section //Block BoundaryManager

of the parameter file needs to know on what boundary colors to have an equation: File:
TEST/src/test.param

1 //Block BoundaryManager
2 . . .
3 . . // . s t u f f f o r D i r i c h l e t boundary
4 . . .
5 equat ion 1 1

Here we tell Gascoigne to use the equation on 1 color, the color 1. The actual equation is
of type BoundaryEquation defined in the File: GAS/src/Interface/boundaryequation.h
The boundary equation is declared as the equation: you need to specify the Form and the
Matrix. Major difference is that these two function get the outward unit normal vector
and the color of the boundary line in addition. Boundary equations are then defined in the
ProblemDescriptor by setting: File: TEST/src/problem.h

1 class ProblemDescr iptor : public ProblemDescr iptorBase
2 {
3 // . . .
4 void B a s i c I n i t (const ParamFile∗ paramf i l e)
5 {
6 // . . .
7 GetBoundaryEquationPointer () =
8 new LocalBoundaryEquation ;
9 }

10 // . . .
11 } ;

We next give an easy example of a boundary equation which will realize the Robin data as
described in Section 3.2.3: File: TEST/src/problem.h

1 #include ” boundaryequation . h”
2

3

4 class LocalBoundaryEquation : public BoundaryEquation
5 {
6 public :
7

8 int GetNcomp () const {return 1 ;}
9 s t r i n g GetName () const { return ” Local B−EQ” ; }

10

11 void pointboundary (double h , const FemFunction& U,
12 const Vertex2d& v , const Vertex2d& n) const
13 {}

(c) Thomas Richter and the Gascoigne3D authors, 2020 22

CHAPTER 3. DESCRIPTION OF THE PROBLEM3.4. EXACT SOLUTION AND EVALUATION OF ERRORS

14

15 void Form(V e c t o r I t e r a t o r b , const FemFunction& U,
16 TestFunction& N, int c o l) const
17 {
18 i f (c o l==1) b [0] += U[0] .m() ∗ U[0] .m() ∗ N.m() ;
19 }
20

21 void Matrix (EntryMatrix& A, const FemFunction& U,
22 const TestFunction& M, const TestFunction& N, int c o l)
23 const
24 {
25 i f (c o l==1) A(0 , 0) += 2 .0 ∗ U[0] .m() ∗ M.m() ∗ N.m() ;
26 }
27

28 } ;

3.4 Exact Solution and Evaluation of Errors

If an analytic solution is known it can be added to the ProblemDescriptor and then be
used for evaluating the error in the L2, H1 and L∞ norms. The operator in the class
ExactSolution is used to define the solution funtion. The parameter int c specifies the
solution component for systems of pde’s.

File: ../src/problem.h

1 #inc lude ” e x a c t s o l u t i o n . h”
2

3 class MyExactSolution : public ExactSo lut ion
4 {
5 public :
6 std : : s t r i n g GetName () const {return ”My exact s o l u t i o n ” ;}
7 double operator () (int c , const Vertex2d& v) const
8 {
9 return v . x ()∗ v . y () ;

10 }
11 } ;
12 class Problem : public ProblemDescr iptorBase
13 {
14 . . .
15 public :
16 void B a s i c I n i t (const ParamFile∗ pf)
17 {
18 . . .
19 GetExactSo lut ionPointer () = new MyExactSolution ;
20 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 23

3.5. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONSCHAPTER 3. DESCRIPTION OF THE PROBLEM

21 } ;

The function to evaluate the error is to be called in the Loop after solving the equation with:

File: ../src/myloop.cc

1 . . .
2 Solve (u , f) ;
3 ComputeGlobalErrors (u) ;
4 . . .

3.5 Systems of partial differential equations

One of the main purpose of Gascoigne is the efficient solution of large systems of partial
differential equations. We call the number of equations in a system (and thus the number
of solution variables) the number of components, denoted by ncomp in Gascoigne. Nearly all
classes have the number of components as member. As example we discuss the two-equation
system in Ω:

(∇u0,∇φ0) + (u0u1, φ0) = (f0, φ0),

(∇u1,∇φ1) + (u0 sin(u1), φ1) = (f1, φ1),

u0 = 0 on Γ4 ∪ Γ8,

u1 = 1 on Γ4,

∂nu1 = 0 on Γ8.

Γ
8

Γ
4

Γ
4

Γ
8

Ω

Several modifications are necessary:

3.5.1 Modification of the right hand side

See 3.1 for comparison. The right hand side has to know the number of equations, in this
case:

1 int GetNcomp () const { return 2 ; }

The operator for specifying the functions f0 and f1 gets the current component as first
argument. Thus, if f0(x, y) = 5 and f1(x, y) = xy:

1 double operator () (int c , const Vertex2d& v) const
2 {
3 i f (c==0) return 5 ;
4 i f (c==1) return v . x () ∗ v . y () ;
5 return 0 . 0 ;
6 }

Don’t forget to return a default value in the last line if you do not check for all components,
since otherwise a random value is set.

(c) Thomas Richter and the Gascoigne3D authors, 2020 24

CHAPTER 3. DESCRIPTION OF THE PROBLEM3.5. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

3.5.2 Modification of Dirichlet data

For Dirichlet data two separate issues have to be considered: first the declaration in the
parameter file has to be adjusted. Second, the function specifying the Dirichlet data has to
be altered. In this example, where the component u0 has Dirichlet data on both and u1 just
on one boundary color, it would be:

1 //Block BoundaryManager
2 d i r i c h l e t 2 4 8
3 d i r i ch l e t comp 4 2 0 1
4 d i r i ch l e t comp 8 1 0

This is to be read as: there are 2 dirichlet colors, the colors 4 and 8. Dirichlet color 4 is
applied to 2 components, components 0 and 1. And so on. Gascoigne uses 0 as index for the
first component. The implementation of the boundary data is as follows:

1 class Loca lD i r i ch l e tData : public Dir i ch l e tData
2 {
3 public :
4 std : : s t r i n g GetName () const { return ” Local D i r i c h l e t Data ; ” }
5 void operator () (DoubleVector& b , const Vertex2d& v , int c o l) const
6 {
7 b . zero () ;
8 i f (c o l==4) b [0] = 0 . 0 ;
9 i f (c o l==4) b [1] = 1 . 0 ;

10 i f (c o l==8) b [0] = 0 . 0 ;
11 }
12 } ;

Here, the values are sorted into a vector with respect to the solution component.

3.5.3 Modification for the equation, form and matrix

Like the right hand side, the equation needs to know about the number of solution compo-
nents given in the header file as

1 int GetNcomp () const { return 2 ; }

In both functions, Form and Matrix the last approximate solution U is given as a parameter.
This parameter is a vector and U[c] specifies component c of the solution. The modifications
necessary for the Form are easy, the values are sorted in to the result vector b[e], where e

is the equation. The test function N is the same for all equations. The separation is done by
using different result values in the vector b[e]. This example is implemented as:

1 void Form(V e c t o r I t e r a t o r& b , const FemFunction& U,
2 const TestFunction& N) const
3 {

(c) Thomas Richter and the Gascoigne3D authors, 2020 25

3.5. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONSCHAPTER 3. DESCRIPTION OF THE PROBLEM

4 b [0] += U[0] . x () ∗ N. x () + U[0] . y () ∗ N. y () ;
5 b [0] += U[0] .m() ∗ U[1] .m() ∗ N.m() ;
6

7 b [1] += U[1] . x () ∗ N. x () + U[1] . y () ∗ N. y () ;
8 b [1] += U[0] .m() ∗ s i n (U [1] .m()) ∗ N.m() ;
9 }

The Matrix works in a simular way. We assemble a local matrix of size ncomp times ncomp,
where A(e,c) specifies the derivative of equation e with respect to U[c]. Thus for example:

A00 =
d

ds
(∇(u0 + sw),∇φ0) + ((u0 + sw)u1, φ0)

∣∣
s=0

= (∇w,∇φ0) + (wu1, φ0).

A01 =
d

ds
(∇u0,∇φ0) + (u0(u1 + sw), φ0)

∣∣
s=0

= (u0w, φ0)

A10 =
d

ds
(∇u1,∇φ1) + ((u0 + sw) sin(u1), φ1) = (w sin(u1), φ1),

A11 =
d

ds
(∇u1,∇φ1) + (u0 sin(u1 + sw), φ1) = (∇w,∇φ1) + (u0 cos(u1)w, φ1),

and the implementation:

1 void Matrix (EntryMatrix& A, const FemFunction& U,
2 const TestFunction& M, const TestFunction& N) const
3 {
4 A(0 ,0) += M. x () ∗ N. x () + M. y () ∗ N. y () ;
5 A(0 ,0) += M.m() ∗ U[1] .m() ∗ N.m() ;
6 A(0 ,1) += U[0] .m() ∗ M.m() ∗ N.m() ;
7

8 A(1 ,0) += M.m() ∗ s i n (U [0] .m()) ∗ N.m() ;
9 A(1 ,1) += M. x () ∗ N. x () + M. y () ∗ N. y () ;

10 A(1 ,1) += U[0] .m() ∗ cos (U [1] .m()) ∗ M.m() ∗ N.m() ;
11 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 26

4 Time dependent problems

Gascoigne provides a simple technique for the modeling of time-dependent partial differential
equations like

∂tu+A(u) = f in [0, T]× Ω,

with a spatial differential operator A(u). Time-discretization is accomplished with Rothe’s
method by first discretizing in time with simple time-stepping methods. For time-dependent
problems, we must provide some additional information:

• We must supply an initial value u(x, 0) = u0(x).

• All problem data like the right hand side, boundary values and differential operator
can depend on the time t ∈ [0, T].

• We must describe the time-stepping scheme and choose a time-step size.

4.1 Time discretization of the heat equation

Here, we examplarily demonstrate the time discretization of the heat equation

∂tu−∆u = f in [0, T]× Ω,

with Dirichlet boundary

u = g on [0, T]× Ω,

and the initial value

u(·, 0) = u0(·) on Ω.

In Gascoigne, time discretization is based on the general θ-scheme

1

θk
(um, φ) + a(um, φ) = (f(tm), φ) +

1− θ
θ

(f(tm−1), φ) +
1

θk
(um−1, φ)− 1− θ

θ
a(um−1, φ),

where θ ∈ (0, 1]. For θ = 1
2 , this scheme corresponds to the Crank-Nicolson method, for

θ = 1 to the implicit Euler method.

The class StdTimeLoop includes a simple loop for time-stepping problems and replaces the
StdLoop:

27

4.1. TIME DISCRETIZATION OF THE HEAT EQUATIONCHAPTER 4. TIME DEPENDENT PROBLEMS

1 void StdTimeLoop : : run (const std : : s t r i n g& prob lemlabe l)
2 {
3 [. . .]
4 for (i t e r =1; i t e r<= n i t e r ; i t e r ++)
5 {
6 [. . .]
7 t i m e i n f o . SpecifyScheme (i t e r) ;
8 TimeInfoBroadcast () ;
9

10 // RHS
11 GetMult iLeve lSo lver ()−>GetSolver()−>GetGV(f) . ze ro () ;
12 GetMult iLeve lSo lver ()−>GetSolver()−>TimeRhsOperator (f , u) ;
13 GetMult iLeve lSo lver ()−>GetSolver()−>TimeRhs (1 , f) ;
14

15 t i m e i n f o . i t e r a t i o n (i t e r) ;
16 TimeInfoBroadcast () ;
17

18 GetMult iLeve lSo lver ()−>GetSolver()−>TimeRhs (2 , f) ;
19

20 // SOLVE
21 SolveTimePrimal (u , f) ;
22

23 [. . .]
24 }
25 }

Every time-step is treated as a stationary problem. The differential operator evaluated at
the old time step is known in advance and thus, Gascoigne automatically includes it when
assembling the right-hand side, if θ < 1. The function TimeInfoBroadcast() announces the
current time t and the time-step k.

The class StdTimeSolver is used instead of StdSolver. It has to be invoked by the op-
tion solver instat in block //Block MultiLevelSolver of the parameter file. Gascoigne
assembles the time-dependent matrix

1

θk
M + A,

where M is the mass matrix and A the stiffness matrix which has to be specified as usual
in the class Equation.

1 void StdTimeSolver : : AssembleMatrix (const V e c t o r I n t e r f a c e& gu , double d)
2 {
3 StdSo lver : : AssembleMatrix (gu , d) ;
4

5 double s c a l e = d/(dt ∗ th e ta) ;
6 GetMatrix()−>AddMassWithDif ferentStenci l (GetMassMatrix () ,
7 GetTimePattern () , s c a l e) ;

(c) Thomas Richter and the Gascoigne3D authors, 2020 28

CHAPTER 4. TIME DEPENDENT PROBLEMS4.1. TIME DISCRETIZATION OF THE HEAT EQUATION

8 }

First, the main part regarding a(·, ·) is assembled. Then, the part regarding the time-
derivative is added with the proper scaling depending on the time-step k and parameter θ.
The parameters θ and the time-step k are provided in the parameter file within the //Block

Loop

1 //Block Loop
2 scheme Theta
3 theta 0 .5
4 dt 0 .01
5 neu l e r 0

By the option neuler we can tell Gascoigne to start with a number of neuler initial steps
using the implicit Euler scheme. In this way irregular initial data may be smoothened which
can be necessary for stability reasons. By setting neuler 0, no Euler steps are used and the
loop directly starts with the θ-time-stepping scheme.

The function GetTimePattern() tells Gascoigne, on which solution components the mass-
matrix will act. This TimePattern is specified in the Equation by a further function:

1 void HeatEquation : : SetTimePattern (TimePattern& TP) const
2 {
3 TP(0 ,0) = 1 . ;
4 }

TimePattern TP is a matrix of size ncomp times ncomp. Typically, this matrix is the diagonal
unit-matrix. See Section 4.3 for special choices of the TimePattern.

Time dependent problems usually are initial-boundary value problems and require some
initial data, like

u(x, 0) = u0(x),

at time t = 0. The initial data is specified via the function GetInitialConditionPointer()

in the class ProblemDescriptor. The initial condition can be set in the same way as the
right-hand side:

1 class MyIn i t i a l : public DomainRightHandSide
2 {
3 public :
4 std : : s t r i n g GetName () const {return ” I n i t i a l Condit ion ” ;}
5 int GetNcomp () const { return 1 ; }
6

7 double operator () (int c , const Vertex2d& v) const
8 {
9 return v . x () ∗ v . y () ;

10 }
11 } ;
12

(c) Thomas Richter and the Gascoigne3D authors, 2020 29

4.2. TIME DEPENDENT PROBLEM DATACHAPTER 4. TIME DEPENDENT PROBLEMS

13 [. . .]
14

15 class ProblemDescr iptor : public ProblemDescr iptorBase
16 {
17 public :
18 std : : s t r i n g GetName () const {return ”Time−Dependent” ;}
19 void B a s i c I n i t (const ParamFile∗ pf)
20 {
21 [. . .]
22 G e t I n i t i a l C o n d i t i o n P o i n t e r () = new MyIn i t i a l ;
23 ProblemDescr iptorBase : : B a s i c I n i t (pf) ;
24 }
25 } ;

4.2 Time dependent problem data

The problem data like boundary data and right hand side can depend on time. Let us for
example consider the right hand side

f(x, t) = sin(πt) ∗ (1− x2)(1− y2).

All data classes like DomainRightHandSide, DirichletData or Equation are derived from
the class Application. We can access the current time and the time step via the functions
double GetTime() const and double GetTimeStep() const.

1 class RHS : public DomainRightHandSide
2 {
3 public :
4 int GetNcomp () const { return 1 ; }
5 s t r i n g GetName () const { return ”RHS” ; }
6

7 double operator () (int c , const Vertex2d& v) const
8 {
9 double t = GetTime () ;

10 return s i n (M PI ∗ t) ∗ (1 . 0 − v . x ()∗ v . x ()) ∗ (1.0−v . y () ∗ v . y ()) ;
11 }
12 } ;

4.3 Non standard time-discretizations

As example for a non-standard time-depending problem we consider the following system of
partial differential equations

∂tu1 + ∂tu2 −∆u1 = f1

∂tu2 + u1 −∆u2 = f2

(c) Thomas Richter and the Gascoigne3D authors, 2020 30

CHAPTER 4. TIME DEPENDENT PROBLEMS4.3. NON STANDARD TIME-DISCRETIZATIONS

For the implementation of this system, Matrix, Form and SetTimePattern must be given
as:

1 void EQ: : Form (. . .)
2 {
3 b [0] += U[0] . x () ∗ N. x () + U[0] . y () ∗ N. y () ;
4

5 b [1] += U[0] .m() ∗ N.m() ;
6 b [1] += U[1] . x () ∗ N. x () + U[1] . y () ∗ N. y () ;
7 }
8

9 void EQ: : Matrix (. . .)
10 {
11 A(0 ,0) += M. x () ∗ N. x () + M. y () ∗ N. y () ;
12

13 A(1 ,0) += M.m() ∗ N.m() ;
14 A(1 ,1) += M. x () ∗ N. x () + M. y () ∗ N. y () ;
15 }
16

17 void EQ: : SetTimePattern (TimePattern& TP) const
18 {
19 TP(0 ,0) = 1 . ;
20 TP(0 ,1) = 1 . ;
21 TP(1 ,1) = 1 . ;
22 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 31

4.3. NON STANDARD TIME-DISCRETIZATIONSCHAPTER 4. TIME DEPENDENT PROBLEMS

(c) Thomas Richter and the Gascoigne3D authors, 2020 32

5 Mesh handling

Mesh handling includes definition of the domain Ω, refinement of meshes, managing of curved
boundaries, input and output of meshes.

The mesh to be used in the calculation is indicated in the parameter file. In the Section
//Block Mesh the mesh to be read is specified:

1 //Block Mesh
2

3 dimension 2
4 gridname mesh . inp
5 p r e r e f i n e 3

Gascoigne distinguishes two types of meshes: inp-files are coarse meshes describing the do-
main Ω. They are user-specified and the file format is explained in Section 5.1. These meshes
are usually as coarse as possible. Refinement is applied during run-time. The parameter
prerefine declares global refinements to be executed before the first solution cycle. It is
also possible to write out and read in locally refines meshes. These meshes are given in the
gup-format:

1 //Block Mesh
2

3 dimension 2
4 gridname mesh . gup
5 p r e r e f i n e 0

During run-time all mesh handling like I/O and refinement is done by the class MeshAgent.
The MeshAgent is a member of the class Loop and is created in the Loop::BasicInit. The
MeshAgent takes care of the mesh refinement hierarchy HierarchicalMesh, it creates the
sequence of multigrid meshes GascoigneMultigridMesh and it finally provides the meshes
on every level used for the computation, the GascoigneMeshes. See the files with the same
names in File: GAS/src/Mesh/* .

If domains with curved boundaries are used, the shape definition is also done in the class
MeshAgent.

5.1 Definition of coarse meshes

Coarse meshes are specified in the inp-format. We indicate the nodes of the mesh, the
elements (that are quadrilaterals in two and hexahedrals in three dimensions) and finally

33

5.1. DEFINITION OF COARSE MESHES CHAPTER 5. MESH HANDLING

the boundary elements. In two dimensions, these are the lines of quadrilaterals that touch
the boundary, in three dimensions we lists the quadrilaterals that are boundaries of the
domain and of elements. We never list interior lines (or quadrilaterals in three dimensions).
The following example is the coarse mesh for the L-shaped domain:

8 11 0 0 0

0 0 -1 0

1 1 -1 0

2 -1 0 0

3 0 0 0

4 1 0 0

5 -1 1 0

6 0 1 0

7 1 1 0

0 1 quad 0 1 4 3

1 1 quad 2 3 6 5

2 1 quad 3 4 7 6

0 4 line 0 1

1 4 line 1 4

2 4 line 4 7

3 4 line 0 3

4 2 line 2 3

5 2 line 2 5

6 8 line 5 6

7 8 line 6 7

−1 10

1

0

−1 0 1

32 4

5 6 7

n1n0

n4 n5

n6n7

n2n3

n3 n2

n0 n1

The file format is very simple: in the row, first the number of nodes in the coarse mesh is
given, followed by the sum of mesh elements plus elements on the boundary. The last three
values are always zero. This example has 8 nodes, 3 quads and 8 lines on the boundary.
Note, that line inside the mesh, like the line between nodes 3 and 4 are not listed in the
mesh description.

After the header line all nodes of the mesh are declared in the format:

n x y z

where n is the index of the node (starting with zero) and x y z are the coordinates. We
always have to give all three coordinates (also in two dimensions).

The nodes are followed by the mesh elements. In two dimensions the format is:

n 0 quad n0 n1 n2 n3

where n is a consecutive index starting with 0. The second parameter is not used, thus
always 0. The mesh element, always quad is indicated by the third entry. The last four
values give the nodes describing the quadrilateral in counter-clockwise sense.

In three spatial dimension, the format is:

(c) Thomas Richter and the Gascoigne3D authors, 2020 34

CHAPTER 5. MESH HANDLING 5.2. CURVED BOUNDARIES

n 0 hex n0 n1 n2 n3 n4 n5 n6 n7

Here, first the nodes n0 to n3 in the front are given in counter-clock wise sense followed by
the nodes in the back.

Finally, all the boundary elements are given. In two dimensional meshes, these are all lines,
where both nodes are on the boundary. Lines inside the mesh may not be specified in the
inp-file. In three dimensions the boundary elements are all quads with four nodes on the
boundary. The format is:

n c line n0 n1

in two dimensions and

n c quad n0 n1 n2 n3

in three dimensions. n is again an iteration index. This index starts with 0. The value c

defines a color for the boundary element. These colors are necessary to distinguish between
different types of boundary conditions, Dirichlet or Neumann in Gascoigne. See Sections 3.2.1
and 3.2.2. In two dimensions, the order of the two nodes n0 n1 is arbitrary. In three
dimensions however the four nodes have to be given in a counter clock-wise sense seen from
the outside of the domain! This is necessary to get a unique definition of the normal vectors
on the boundary. Thus, for the hex shown in Picture above, the inp-file would be:

8 7 0 0 0

0 0 0 0

1 1 0 0

2 1 1 0

3 0 1 0

4 0 0 1

5 1 0 1

6 1 1 1

7 0 1 1

0 0 hex 0 1 2 3 4 5 6 7

0 4 quad 0 1 2 3

1 4 quad 1 5 6 2

2 4 quad 3 2 6 7

3 4 quad 4 0 3 7

4 4 quad 5 4 7 6

5 4 quad 4 5 1 0

5.2 Curved boundaries

A part of the boundary can be assigned a curved boundary function. The idea is easy: Let
the boundary with color col be a curved boundary. We specify a function Rd → R which
has the desired curved boundary as zero-iso-contour. For instance if the boundary Γ of the
domain should have the shape of a circle with radius r and midpoint (mx,my), one possible
function fcircle would be

fcircle(x, y) = (x−mx)2 + (y −my)2 − r2.

Whenever an element with boundary nodes on a line with color col is refined, the newly gen-
erated nodes on the boundary line are then pulled onto the zero-iso-contour of the boundary
function. This is simply done by solve the root of fcircle with the Newton method.

(c) Thomas Richter and the Gascoigne3D authors, 2020 35

5.2. CURVED BOUNDARIES CHAPTER 5. MESH HANDLING

Adjust Curved BoundaryRefine

In Gascoigne boundary functions are described by the class BoundaryFunction<DIM> in
File: GAS/src/Mesh/BoundaryFunction . The circle is given by:

1 class C i r c l e : public BoundaryFunction<2>
2 {
3 double r , mx , my ;
4 public :
5 C i r c l e (double r , double mx, double my) : r (r) , mx (mx) , my (my)
6 { }
7

8 double operator () (const Vertex2d& v) const
9 {

10 return (v . x()− mx)∗ (v . x()− mx)+(v . y()− my)∗ (v . y()− my)− r ∗ r ;
11 }
12 }

The boundary function object has to be passed to the MeshAgent. For this, a derived mesh
agent class has to be specified and created in the Loop. The following minimal steps have to
be taken:

1 class LocalMeshAgent : public MeshAgent
2 {
3 C i r c l e c i r c l e ;
4 public :
5 LocalMeshAgent () : MeshAgent ()
6 {
7 AddShape (4 , & c i r c l e) ;
8 }
9 } ;

10

11 class LocalLoop : public StdLoop
12 {
13 public :
14

15 void B a s i c I n i t (const ParamFile∗ paramf i l e ,
16 const ProblemContainer∗ PC,
17 const Funct iona lConta iner ∗ FC=NULL)
18 {

(c) Thomas Richter and the Gascoigne3D authors, 2020 36

CHAPTER 5. MESH HANDLING 5.3. ADAPTIVE REFINEMENT OF MESHES

19 GetMeshAgentPointer () = new LocalMeshAgent () ;
20 StdLoop : : B a s i c I n i t (paramf i l e , PC, FC) ;
21 }
22 } ;

In this example, the boundary with color 4 is used as curved boundary.

5.3 Adaptive refinement of meshes

For local refinement, the MeshAgent has the function refine nodes(nodes). The nvector<int>
nodes contains indices of mesh nodes to be refined. If a node is to be refined, all elements
having this node as a corner node will be refined.

File: ../src/myloop.cc

1 for (i t e r =1; i t e r < n i t e r ;++ i t e r)
2 {
3 . . .
4 Solve (u , f) ;
5 . . .
6 // Estimate Error
7 nvector<int> r e f ;
8 // p i ck nodes f o r re f inement in r e f
9 GetMeshAgent()−> r e f i n e n o d e s (r e f) ;

10 }

5.3.1 Estimating the Energy-Error

The class DwrQ1Q2 contains a function for easy estimation of an energy-like error. It is used
as

File: ../src/myloop.cc

1 #include ”dwrq1q2 . h”
2 . . .
3 for (i t e r =1; i t e r < n i t e r ;++ i t e r)
4 {
5 . . .
6 Solve (u , f) ;
7 . . .
8 // Estimate Error
9 DoubleVector eta ;

10 DwrQ1Q2 dwr(∗GetMult iLeve lSo lver ()−>GetSolver ()) ;
11 dwr . EstimatorEnergy (eta , f , u) ;
12 . . .
13 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 37

5.3. ADAPTIVE REFINEMENT OF MESHES CHAPTER 5. MESH HANDLING

5.3.2 Picking Nodes for Refinement

There are several methods for picking nodes for refinement. Common to all is to choose nodes
n with large estimator values eta[n]. The class MalteAdaptor uses a global optimization
scheme for picking nodes:

File: ../src/myloop.cc

1 #include ” malteadaptor . h ’ ’
2 . . .
3 for (i t e r =1; i t e r < n i t e r ;++ i t e r)
4 {
5 . . .
6 Solve (u , f) ;
7 . . .
8 // Estimate Error
9 DoubleVector eta ;

10 DwrQ1Q2 dwr (GetMult iLeve lSo lver ()−>GetSolver ()) ;
11 dwr . EstimatorEnergy (eta , f , u) ;
12

13 // Pick Elements
14 nvector<int> r e fnode s ;
15 MalteAdaptor A(paramf i l e , e ta) ;
16 A. r e f i n e (r e fnode s) ;
17

18 // Ref ine
19 GetMeshAgent()−> r e f i n e n o d e s (r e fnode s) ;
20 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 38

6 Flow problems and stabilization

For the stable discretization of the the Stokes and Navier-Stokes systems finite element
pairs for pressure and velocity which fulfill the inf-sup condition are necessary. Gascoigne
always uses equal-order elements which are not inf-sup stable. We thus use stabilization
techniques by adding local stabilization terms. For dominant convection further stabilization
is necessary.

6.1 The function point

To set element-wise constants in Gascoigne, the function point is used:

1 void Equation : :
2 po int (double h , const FemFunction& U, const Vertex2d& v) const
3 {
4

5 }

This function is called before every call of Matrix and Form and here the local mesh-size
h and the coordinates of the node v are given as a parameter. That way one can specify
certain criteria for the equation based on location or local mesh width.

To stabilize a given equation or system of equations (like Stokes and Navier-Stokes) one
usually modifies it by adding certain stabilizing terms. These terms often depend on the
local mesh width and have therefore to be defined in this function.

Since the function point is defined as const no class members can be altered. Thus, every
variable which shall be modified here has to be defined as mutable in the header file:

1 mutable double v a r i a b l e ;

6.2 Stabilization of the Stokes system

The Stokes equations are given by

∇ · v = 0, −ν∆v +∇p = f in Ω.

39

6.3. STABILIZATION OF CONVECTIVE TERMSCHAPTER 6. FLOW PROBLEMS AND STABILIZATION

Using piece-wise linear or quadratic finite elements for both velocity and pressure does not
yield a stable discretization. Stability is reached by adding terms to the divergence equation
like

(∇ · v, ξ) +
∑

K∈Ωh

αK(∇p,∇ξ)K ,

where αK is an element-wise constant usually given by

αK = α0
h2
K

6ν
.

Hence, the call of the function point should look like this:

1 void Stokes : :
2 po int (double h , const FemFunction& U, const Vertex2d& v) const
3 {
4 alphaK = alpha0 ∗ h∗h /6 .0/ nu ;
5 }

The parameter alpha0 can be read from the parameter file. The variable alphaK has to
be defined as mutable in the header file:

1 mutable double alphaK ;

6.3 Stabilization of convective terms

The Navier-Stokes system

∇ · v = 0, v · ∇v − ν∆v +∇p = f in Ω,

needs additional stabilization of the convective term if the viscosity is low. The full stabilized
system reads

(∇ · v, ξ) +
∑
K

(αK∇p,∇ξ)K = 0,

(v · ∇v, φ) + ν(∇v,∇φ)− (p, ·∇φ) +
∑
K

(δKv · ∇v, v · ∇φ)K = (f, φ).

The parameters αK and δK are set to

αK = α0

(
6ν

h2
K

+
‖v‖K,∞
hK

)−1

, δK = δ0

(
6ν

h2
K

+
‖v‖K,∞
hK

)−1

,

where ‖v‖K,∞ is the norm of the local velocity vector. Usually we use

α0 = δ0 ≈
1

2
.

For programming the Matrix it is usually not necessary to implement all derivatives. It
should be sufficient to have:

(c) Thomas Richter and the Gascoigne3D authors, 2020 40

CHAPTER 6. FLOW PROBLEMS AND STABILIZATION 6.4. LPS STABILIZATION

1 void Equation : : Matrix (. . .)
2 {
3

4 . . .
5 // d e r i v a t i v e o f the convec t ion s t a b i l i z a t i o n terms
6 A(1 ,1) += d e l t a ∗ (U [1] .m()∗M. x () + U [2] .m() ∗ M. y ())
7 ∗ (U [1] .m()∗N. x () + U[2] .m() ∗ N. y ()) ;
8 A(2 ,2) += d e l t a ∗ (U [1] .m()∗M. x () + U [2] .m() ∗ M. y ())
9 ∗ (U [1] .m()∗N. x () + U[2] .m() ∗ N. y ()) ;

10 . . .
11 }

6.4 LPS Stabilization

Another way to stabilize these equations is the so called Local Projection Stabilization (LPS).
The idea is to use the difference between the function itself and its projection onto the coarser
grid for the stabilizing terms described in the previous chapter.

Therefore the new stabilized terms should now look like this for the Stokes

(∇ · v, ξ) +
∑

K∈Ωh

αK(∇πp,∇πξ)K = 0

and the Navier-Stokes systems

(∇ · v, ξ) +
∑
K

(αK∇πp,∇πξ)K = 0,

(v · ∇v, φ) + ν(∇v,∇φ)− (p, ·∇φ) +
∑
K

(δKv · ∇πv, v · ∇πφ)K = (f, φ).

where π represents the difference

π = [id− i2h]

with the projection i2h onto the coarser grid. αK and δK can again be taken from above.

To implement this difference in Gascoigne, one simply has to use the class LpsEquation

instead of Equation. It provides the additional functions

1 void l p s p o i n t (double h , const FemFunction& U,
2 const Vertex2d& v) const { . . . }
3 void StabForm (V e c t o r I t e r a t o r b , const FemFunction& U,
4 const FemFunction& UP, const TestFunction& Np) const { . . . }
5 void StabMatrix (EntryMatrix& A, const FemFunction& U,
6 const TestFunction& Np, const TestFunction& Mp) const { . . . }

which have to be used for the stabilizing terms.

(c) Thomas Richter and the Gascoigne3D authors, 2020 41

6.4. LPS STABILIZATION CHAPTER 6. FLOW PROBLEMS AND STABILIZATION

The variables UP, Np and Mp represent the difference of U, N and M with their respective
projection onte the coarser grid and can therefore be used for πp and πv, πφ and the
derivatives.

One also has to tell Gascoigne to use these LPS-functions by changing the parameter
discname in the parameterfile to the appropriate LPS-version. This is done by adding
the word Lps, e.g. Q1 has to be changed to Q1Lps.

As described before for programming the StabMatrix it should be sufficient to have:

1 void LpsEquation : : StabMatrix (. . .)
2 {
3

4 . . .
5 // d e r i v a t i v e o f the convec t ion s t a b i l i z a t i o n terms
6 A(1 ,1) += d e l t a ∗ (U [1] .m()∗Mp. x () + U [2] .m() ∗ Mp. y ())
7 ∗ (U [1] .m()∗Np. x () + U [2] .m() ∗ Np. y ()) ;
8 A(2 ,2) += d e l t a ∗ (U [1] .m()∗Mp. x () + U [2] .m() ∗ Mp. y ())
9 ∗ (U [1] .m()∗Np. x () + U [2] .m() ∗ Np. y ()) ;

10 . . .
11 }

(c) Thomas Richter and the Gascoigne3D authors, 2020 42

	Introduction
	Installation
	A minimal example solving a partial differential equation

	The parameter file
	Description of the problem
	The right hand side
	Boundary Data
	Dirichlet boundary data
	Neumann conditions
	Robin conditions

	Definition of the partial differential equations
	Nonlinear equations
	Equations on the boundary & Robin boundary data

	Exact Solution and Evaluation of Errors
	Systems of partial differential equations
	Modification of the right hand side
	Modification of Dirichlet data
	Modification for the equation, form and matrix

	Time dependent problems
	Time discretization of the heat equation
	Time dependent problem data
	Non standard time-discretizations

	Mesh handling
	Definition of coarse meshes
	Curved boundaries
	Adaptive refinement of meshes
	Estimating the Energy-Error
	Picking Nodes for Refinement

	Flow problems and stabilization
	The function point
	Stabilization of the Stokes system
	Stabilization of convective terms
	LPS Stabilization

