1

Numerische Methoden in der Strémungsmechanik October 24, 2023
OvGU WiSe 2023/24

Practical Exercises 2

In this problem sheet you learn how to set the right-hand side, boundary data and the
domain. The templates are found in the folder problem2. The given code solves the
Poisson equation

—Au=f in Q,
u=g on Jf,

on the unit square with f = 1 and Dirichlet data g = 0 on the boundary. Compile and
run the program as in Problem 1, then look at the solution in ParaView.

Problem 2.1 (Setting the right-hand side)

The equation, right-hand side and boundary data are defined in the ProblemDescriptor,
see the file problem.h. For the constant right-hand side f = 1, we use the preimple-
mented class MyRightHandSide. For more complicated functions, we have to change the
implementation of the right-hand side on our own.

The class MyRightHandSide can now be modified in problem.h. Instead of the right-

hand side f = 1, we want to use

1 ifz>0.5,
flz,y) = { 0 else.

Implement this right-hand side in MyRightHandSide by changing the function operator ().
In this function the coordinates (z,y) of the current point can be accessed through v.x ()
and v.y() and the right-hand side at this point is returned by the function. Compare
the solution to the one obtained for constant f = 1.

Problem 2.2 (Setting Dirichlet boundary values)

We still work in problem.h file. To modify the Dirichlet boundary values, first set the
corresponding pointer in MyProblemDescriptor from ZeroDirichletData to

GetDirichletDataPointer() = new MyDirichletData(pf);



Now we can specify the boundary function g in the class MyDirichletData. Modify this
class in problem.h such that the boundary values are

g(z,y) = z(1 - z).

As before the variable v can be used to access the coordinates of the current point. The
Dirichlet values are not directly returned, but instead stored inside the variable b[0].
Compare the solution with the one obtained for homogeneous Dirichlet data.

Problem 2.3 (Mixed boundary data)

Now we want to use Dirichlet boundary values on a part I'? of the boundary only. On
the remaining part I'™ := 90 \ T'%, we want to prescribe the homogeneous Neumann
boundary condition

Opu = 0.

This is the so called natural boundary condition for the Laplace equation as

(VU, V¢)Q = (—AU, ¢)Q + <8nu7 ¢>8Q

In Gascoigne, every part of the boundary has its own color (You learn about defining
this colors in the next problem). Here, the square has four boundaries with the colors
1,2,3,4. For each color we must decide, if we want to use a Dirichlet condition or a
Neumann condition.

Look at the file gascoigne.param where all paramters are defined. We only specify
Dirichlet colors. If a boundary color does not appear in the file, it will be used as

Neumann boundary. Now have a look at the Block BoundaryManager in the parameter
file

//Block BoundaryManager

dirichlet 41234
dirichletcomp 1 10
dirichletcomp 210
dirichletcomp 310
dirichletcomp 4 10
3 In the geometry file square.inp there is a “color” value

assigned to each boundary line. The entries in the Block
4 9 BoundaryManager tell GASCOIGNE to set Dirichlet boundary
values on all lines with colors 1 to 4 (which are all boundary
lines). Have a look at the chapter ”Boundary Data“ to

1 understand the details.

Now change the parameter file, such that Dirichlet data is given only on the left and
right parts of the boundary. These parts are indicated by the color values 2 and 4. On
the top and bottom part, marked by the color values 1 and 3, we want to prescribe



homogeneous Neumann data. In Paraview use the option Filters->Warp By Scalar.
Press the button 3D and you can have a 3d-look at your solution. How does the solution
and its normal derivative 7 - Vu behave at the boundary. Also try to choose other sides
for Neumann.

What happens if you use Neumann boundary values on all parts of the boundary? For

no Dirichlet values at the whole boundary, the //Block BoundaryManager has to be
modified to

//Block BoundaryManager

dirichlet O

Problem 2.4 (Modifying the computational domain)

-1,1) 1,1
In this exercise, we want to solve the Poisson problem

on the L-shaped domain ;. The geometry of the
domain is specified inside an . inp-file, which consists
(0.0) .0 of vertices, lines and quadrilaterals in a text format.
Before creating the new domain, have a look at the
geometry file for the unit square, square.inp, and
read the chapter ”Definition of coarse meshes® in
the script to understand its entries.

(-1,-1) (0,-1)

Create a geometry file 1shape. inp for the L-shaped domain and solve the Poisson prob-
lem with constant right-hand side and homogeneous Dirichlet data on €27. Furthermore,
change gridname in the Block Mesh of the parameter file to 1shape. inp.

Hint: You will need three quadrilaterals to define the coarsest grid of the L-shaped
domain and therefore eight vertices in total. You don’t have to list inner lines in the
geometry file, but the boundary lines have to be specified as they contain the information
which boundary color the line belongs to.

Hint: You can open .inp-files in ParaView to visually check if the geometry is correct.
Open the file as usual with FiLE — OPEN. Change SURFACE to WIREFRAME in the
toolbar. ParaView will color the lines according to their boundary color. Note that this
visual check does not guarantee that the .inp-file is indeed a correct geometry file for
GASCOIGNE.

Troubleshooting:

e Make sure that the numbers in the first line of your . inp-file are correct. Remember
that the second number in that line is the sum of the number of boundary lines
and quadrilaterals.

e Make sure that the numbering of the vertices (and lines, quads) is consecutive.



e Make sure that the vertices of all quads are specified in a counter-clockwise order.

e Make sure that the boundary colors in the parameter file and the MYDIRICHLET-
DATA class matches that of the geometry file.

e No not list internal lines, only lines at the boundary of the domain are given in
the inp-file.

Problem 2.5 (Extra)

GASCOIGNE can be used to create curved domains as well. Here, we want to modify
the L-shaped domain from Exercise 2.4 in such a way that the lower-right part of the
domain between the vertices (0,-1) and (1,0) is curved, i.e. it lies on a circle with radius
1 and midpoint (1,-1).

Therefore, specify a seperate color (e.g. 80) for the two edges of the L-shaped domain
that you want to ”curve*.

The class MyMeshAgent is already prepared in the file problem.h. Add the following
lines to its constructor

MyMeshAgent () : MeshAgent ()
{
double r = 1.;
Vertex2d mp(1., -1.);
D.BasicInit(mp, r);
AddShape (80, &D);
}

Here, the first 3 lines define the circle that you want to project the edge to. The last
line contains the color of the edges you want to project (here: color 80) and the object
that describes the circle.

Then, we need to add the mesh agent in main.cc to LocalLoop. This was already done
in the Problem 1. Add the following code to main.cc and use LocalLoop instead of
StdLoop :

class LocalLoop : public StdLoop {
public:
votid BasicInit(const ParamFile& paramfile,
const ProblemContainerx PC,
const FunctionalContainer* FC) {
GetMeshAgentPointer() = new MyMeshAgent;
StdLoop: :BasicInit(paramfile, PC, FC);
}
};

Run the program again on this curved domain. Do not forget to set the boundary values
on the new boundary color in gascoigne.param.



