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Numerische Methoden in der Strémungsmechanik
OvGU WiSe 2023/24

Practical Exercises 3

In this exercise we are going to numerically investigate the convergence behavior of the
discrete solution u, to the exact solution u in different norms.

Recalling Finite Elements course, theoretical error bounds read:
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Problem 3.1

At first we consider an inhomogeneous 2D Laplace problem on the unit square with zero
Dirichlet boundary conditions:

—Au=f inQ=(0,1)2
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In order to compute the discretization error we want to set the right-hand side f and
the Dirichlet data ¢ in such a way that the exact solution of system is given by

u(z,y) := sin(7x) cos(my) (x,y) € Q.

Compute the corresponding right-hand side f = —Auwu analytically and implement this
problem in GASCOIGNE by modifying the right-hand side and boundary data (use M_PI
for an approximation of 7). Solve and visualize the problem.

Write down derivatives of the exact solution u, namely Vu. Soon you will need it for
error evaluation.

Problem 3.2

Now, we are interested in different error norms.

The next part is to take control over the refinement loop, in the main.cc file you can
find definition of LocalLoop class

class LocalLoop : public StdLoop {}
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It inherits from StdLoop that implements diverse outer loops, e.g. mesh adaptation or
time stepping. Please switch from StdLoop to LocalLoop, solve the problem again and
compare solutions.

Problem 3.3

To compute functionals in Gascoigne we need to implement DomainFunctional. Please
find in the main.cc

class Hinorm : public virtual DomainFunctional {

Implement functionals to compute the errors in the L?—norm || - ||, and H'—norm ||V - ||
for every component of the solution uy (in our case there is only one component).

In the exercise you can find pre-prepared code that is currently commented out.

In order to compute global errors, you need to sum the evaluation of error functional J

on every element:
1/2

lu —unll = | D J(u—un)
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Please implement J method in your functional class, where you have access to your finite
element solution U and spatial vertex v.

double J(const FemFunction& U, const Vertex2d& v) const

{ ...}

The parameters FemFunction& U and Vertex2d& v are the solution u and the point v.
The solution U itself is a vector so that it holds u(z,y) ~ U[0].m(). You can access
the derivatives of the by dyu(x,y) ~ U[0].x() and Oyu(z,y) ~ U[0O].y(). Spatial
coordinates of a point v are given by v.x() and v.y().

The integration is done under the hood. At the end you need to apply square root to
your result.

Compute these errors for different levels of mesh refinement and for both Q'- and Q-

elements. You can switch to Q?-elements by changing CGQ1 to CGQ2 in the gascoigne.param

file.

Write the computed errors to the files convergence_ql.dat and covergence_g2.dat.
Which rate of convergence do you observe? Compare these results with the theoretical
predictions.

You you can write this files directly in your code or copy and past it from the program
output.

std::string filename = "convergence_ql.dat";
std::fstream s(filename, s.binary | s.trunc | s.in | s.out);
s << “#I_I" << “hl_ll_l" << llh"lull <L "o k< endl;



Problem 3.4

In this exercise, we visualize the results of problem 3.2 with gnuplot. Therefore, open
gnuplot by typing gnuplot into the terminal. You will find a prompt gnuplot>. First,
we create a logarithmic plot of the L?-error over the mesh size h:

gnuplot> set logscale xy
gnuplot> plot ’convergence_ql.dat’ using 1:2 title ’L2’° with 1p

It is possible to visualize the three computed norms concurrently in one plot:

gnuplot> plot ’convergence_ql.dat’ using 1:2 title ’L2’ with 1lp,
’convergence_ql.dat’ using 1:3 title ’H1’ with 1lp,
’convergence_ql.dat’ using 1:4 title ’Linf’ with 1p

gnuplot can also be used to determine an estimate for the order of convergence via a
least squares fit: Therefore, we define a function f(x) that describes the convergence
with variable parameteres A and B and fit it to the data:

gnuplot> f(x) = A * (x ** B)
gnuplot> fit f(x) ’convergence_ql.dat’ wusing 1:2 via A,B

The important output of the fit.log is

Final set of parameters Asymptotic Standard Error
A = 0.478391 +/- 0.0004705 (0.09836%)
B = 1.99301 +/- 0.0006817 (0.0342%)

that tells you that the estimated order of convergence is B = 1.9930 + 0.0007.

Finally, check visually that the fit is good by plotting f (x) together with the data:
gnuplot> plot ’convergence_ql.dat’ wusing 1:2 title L2, f(x)

Problem 3.5
Now, we want to consider the exact solution
u(z,y) = sin(kmrz) cos(kmy) (xz,y) € Q

of system where k € Z will be read from the parameter file. Therefore, add a new
block Equation to the parameter file:

//Block Equation
k 10

Note that this block has to appear before the dummy block //Block End.

This new data entry must be read within Gascoigne. We will combine all data that is
required to define the problem in the class MyProblemData given in problem.h. Here, you
can access the parameter file within the function BasicInit(const ParamFile &pf).
To read from the file, insert the following lines to MyProblemData: :BasicInit(...)



DataFormatHandler DFH;
DFH.insert("k",&k, 1);
FileScanner FS(DFH);
FS.readfile(pf, "Equation");

and, naturally, you’ll have to define a variable double k and add it to the class MyProblemData.
Later on, all classes that know the problem data class, such as MyRightHandSide or
HiNorm, have access to this variable via data.k.

Since we change the exact solution, calculate the corresponding right-hand side f =
—Au again analytically and make the necessary changes in the operator() functions
of MyExactSolution and MyRightHandSide. Here, you can access the value of k by
data.k.

Solve and visualize the problem for k& € {10,50}. Try to interprete the convergence
behavior. You will have to use fine meshes!

Problem 3.6 (Extra)

In most situations the analytical solution is unknown. In this case, one can only compare
coarse solutions to a reference solution @ computed on a very fine mesh.

In this exercise we are interested in the error measured in the H'-seminorm ||V - || 12(q)-
Even if we approximate ||V (u—up)|[z2(0) = [[V (@ —un)| 12(q) a direct calculation of this
error needs interpolation between solutions on different meshes. For this reason, use the
Galerkin orthogonality to show the following identity:

1V =)l = (‘HVUH%Q(Q) - HVuhH%m)DI/Q
~ (|IVl ) — I96n22(0) Dl/z'

a) Use the L-shaped domain from exercise sheet 2 and set the right-hand side equal to
one, i.e. f = 1. This problem has a solution which is unknown to us. Compute a
reference solution on a very fine mesh. Calculate its H'-seminorm using the error
computations from the previous exercises and setting the ”exact solution” to 0.

b) Use the formula above to compute the error.
For this, finish the implementation Use cout to print the error to the terminal.

c¢) Run the program on different mesh levels and for Q'- and Q?-elements. Which rate
of convergence do you observe? Try to explain your observations.



