
Numerische Methoden in der Strömungsmechanik
OvGU WiSe 2023/24

Practical Exercises 5

In this exercise, we study stationary convection-diffusion equations and different stabi-
lization techniques.

Problem 5.1 (Changing the equation)

We consider the following convection-diffusion equation

−ϵ0∆u+ β · ∇u = 0 in Ω = (0, 1)2,

u = g on ∂Ω,

with diffusion coefficient ϵ0 > 0 and convective field β = (1, 1)t.

First, implement the correct Dirichlet data for this problem. We consider the following
discontinuous function

g(x, y) =

{
1 if y ≤ 0.5,

0 else.

which you have to implement in the file problem.h.

The weak formulation of the convection-diffusion equation is given by a(u, ϕ) = (f, ϕ)
for all ϕ ∈ Vh, where

a(u, ϕ) = ϵ0(∇u,∇ϕ) + (β · ∇u, ϕ).

The variational formulation is implemented in the function

1 Form(VectorIterator b, const FemFunction& U, const TestFunction& N)

The parameters FemFunction& U and TestFunction& N are the solution u and the test
function ϕ. You can access the value of the testfunction and its derivative by ϕ(x, y) ∼
N.m(), ∂xϕ(x, y) ∼ N.x() and ∂yϕ(x, y) ∼ N.y(). The solution U itself is a vector so that
it holds u(x, y) ∼ U[0].m() and so on. (The values U[1], U[2] are used for systems of
differential equations and will be explained later.)

The form of the Laplace problem, i.e. the bilinear form a(u, ϕ) = (∇u,∇ϕ) is already
implemented in the file myequation.cc:

1 void MyEquation::Form(VectorIterator b, const FemFunction& U,

2 const TestFunction& N) const {

3 b[0] += U[0].x()*N.x()+U[0].y()*N.y();

4 }

1



Analytical Jacobian (Finite difference version at the end of exercise)

As Gascoigne is designed to work directly with nonlinear problems, we have to imple-
ment above equation by providing both, the form a(u, ϕ), which is a semilinear mapping
a : V × V → R, and its (Gâteaux-) derivative a′u(u, ϕ, δu) : V × V × V → R,

a′u(u, ϕ, δu) := lim
s→0

a(u+ s δu, ϕ)− a(u, ϕ)

s
.

For the discrete space Vh and for fixed u the derivative can be interpreted as a matrix. If
a is linear in its first component there holds a′u(u, ϕ, δu) = a(δu, ϕ). Form and matrix for
the Laplace problem, i.e. the bilinear form a(u, ϕ) = (∇u,∇ϕ) are already implemented
in the file myequation.cc:

1 void MyEquation::Matrix(EntryMatrix& A, const FemFunction& U,

2 const TestFunction& M, const TestFunction& N) const {

3 A(0,0) += M.x()*N.x()+M.y()*N.y();

4 }

Here, N represents the test function ϕ, M the direction δu and U[0] the variable u. The
x- and y-derivatives of the functions can be accessed through the methods x() and y(),
their value through m().

Task: Now please add the transport term given by (β·∇u, ϕ) to Form and corresponding
term Matrix.

The constructor of MyEquation copies MyData class

1 MyEquation(const MyData &PD) : data(PD) { }

Check MyData and make sure it reads ϵ0 from the parameter file and solve the problem
for ϵ0 ∈ {10−1, 10−2, 10−3} on meshes with a different refinement level. What behavior
of the discrete solution do you observe? In the code ϵ0 is called visc.

Problem 5.2 (Artificial Diffusion)

In order to avoid the unphysical oscillations of the discrete solution on coarse meshes
one can add certain stabilization terms to the Galerkin formulation. At first, we add
full artificial diffusion to the discrete equation. This means that the diffusion coefficient
becomes mesh-dependent and is set to ϵ = max{ϵ0, h}. To implement this inGascoigne
you will need the function point in the MyEquation class:

1 void MyEquation::point(double h, const FemFunction& U,

2 const Vertex2d& v) const

This function is called before every call of Form. It contains parameters such as the local
mesh-size h and the coordinates of the node v. Since the function point is defined as
const it cannot change any variables of the class. Thus, every class variable that shall
be modified in the point-function has to be defined as mutable, e.g.

2



1 mutable double ‘variablename’

in the header file equation.h.

Solve the problem with ϵ0 = 10−3 and for a series of mesh refinements. What is the
effect on the solution compared to Problem 5.1?

Problem 5.3 (SUPG)

Now, we make use of the Streamline Upwind/Petrov-Galerkin (SUPG) method. There-
fore, eliminate the artificial diffusion by setting the parameter ϵ back to its original
value ϵ0. Here, also artificial diffusion is added, but only in streamline direction. The
stabilization term takes the following form:

Sh(u, ϕ) = δ(β · ∇u,β · ∇ϕ).

Here, ϕ denotes a test function and δ is the stabilization parameter which is chosen to
be cell-wise constant:

δ = δ0

(
ϵ0
h2

+
∥β∥∞
h

)−1

, δ0 > 0.

Implement this method in Gascoigne by modifying Form and point. Read the param-
eter δ0 from the parameter file.

Solve the problem for ϵ0 = 10−3 and δ0 ∈ {10−1, 1, 10}. What is the effect on the
solution? Compare your observations with the results of Problem 5.2. Do you still
observe oscillations?

3



Problem 5.4 (Extra)

Finally, we consider another stabilization method, namely the shock-capturing method.
Here, we still use SUPG stabilization, but add further artificial diffusion in the direction
where oscillations in the SUPG method are observed. This non-linear stabilization term
is defined as

Ssc
h (u, ϕ) = δsc(c(u)∇u,∇ϕ)

with

c(u) =

{
0 if ∇u = 0,
(β·∇u)2

∥∇u∥2 else

and δsc = δsc0

(
ϵ0
h2 + ∥β∥∞

h

)−1
.

Implement this method inGascoigne by modifying Form and point. Solve this problem
for ϵ0 = 10−3 and δsc0 ∈ {0.1, 0.5, 1.0}. What is the effect on the solution?

Hint: You may neglect the u-dependence of c(u) in the Jacobian matrix.

4


