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In here we try to understand that how the Neural Networks can be used
to approximate any real valued function. This is known as the ”Universal
Approximation Theorem”. We try to understand the underlying structure of
this powerful theorem along with its proof. Before we even start, one must
define the Neural Networks properly. After that we give some basic concepts
and theorems that we will use in the proof of approximation theorem.

Definition 1. (Neural Network) Let d, L ∈ N, N = (N0, Nℓ, · · · , NL) ∈ NL+1

and σ : R → R. We say that σ is activation function, L is the number of
layers, and N0, NL, Nℓ, ℓ ∈ [L−1] as number of neurons in the input, output,
and ℓ-th hidden layer, respectively. Let θ = (θ(ℓ))ℓ be the parameters such
that,

θ(ℓ) = (W (ℓ), b(ℓ))ℓ

We denote the number of parameters by PN =
∑L

ℓ=1NℓNℓ−1+Nℓ. Define the
corresponding realization function Φα : RN0 × RPN → RNL which satisfies,
for any input x ∈ RN0 and parameters θ, we set Φα = Φ(L) where α = (N, σ),
then

Φ(1)(x, θ) = W (1) · x+ b(1)

Φ̄(ℓ)(x, θ) = σ(Φ(ℓ)(x, θ)), for ℓ ∈ [L− 1]

Φ(ℓ+1)(x, θ) = W (ℓ+1) · Φ̄(ℓ)(x, θ) + b(ℓ+1)

and σ applied componentwise. We refer W as weight matrix and b as bias
vector.

Note that W (ℓ) ∈ RNℓ × RNℓ−1 are matrices, so they represent a linear
transformation from RNℓ to RNℓ−1 . Therefore we may see the Neural Net-
works as successive composition of affine linear transformations, that is

x 7→ W (ℓ) · x+ b(ℓ)

Now for the further usage we will define the set neural networks.

Definition 2. (Set of Neural Networks) Let α = (N, σ) be a Neural Network
with input N0 = d and NL = 1, and activation function σ. The set of Neural
Networks is defined by

Fα = F(N,σ) = {Φα(·, θ) : θ ∈ RPN}

1



There are simple way to write this two definition, in terms of activation
function and affine transformations. Since the realization of Neural Network
is given by recursively applying σ we may write as,

x 7→ F (x) := TL(σ(TL−1(· · · (σ(T1(x)) · · · ))))

where TL is the corresponding affine transformation, i.e. Tℓ = W (ℓ) · x +
b(ℓ). Then the Definition 2 basically becomes the set of all functions F (x)
of the form wihch is described above, that is F ∈ F(N,σ). Since we try
to approximate functions with the Neural Networks, we need to define a
topology, so it is time to develop some tools which we will use later.

Definition 3. Let K ⊂ Rd, then C(K) is the set,

C(K) = {f : K → R, f is continious}

and we equip C(K) with the supremum norm, that is

||f ||∞ = sup
x∈K

|f(x)|

Now note that with this norm C(K) becomes a topological vector space
over reals (the sum of two continous function is continous and scalar multi-
plication of continous function with real number is also continous function).
Therefore it is reasonable to talk about the dual space of C(K), we define
its dual as the space of all linear maps from C(K) to R,

C(K)∗ = {Ψ : C(K) → R}

Since we will deal with the compact subspace of Rd, by compact space we
mean that the subspace K ⊂ Rd which is closed and bounded (this follows
from the Heine-Borel theorem). Intiutively it can be thought as a ”sphere-
like” subspaces of Rd, see [1].

Theorem 4. (Riesz Representation) If K ⊂ Rd is compact, then every linear
functional Ψ on C(K) is represented by a unique regular signed Borel measure
µ in the sense that,

Ψ · f =

∫
K

fdµ

Remark: The measure µ can be thing of some function that we used for
integration. For example one can think µ = g(x) for some function g, then the
differential dµ = g′(x)dx. Another analogy can be made by using differential
forms, that is if µ is any p-form, then dµ is just an exterior derivative of this
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p-form. Even more special case, for the interval I ⊂ R, this is just a regular
expression dµ = dx from Calculus.

For more general version of this theorem one may see [4, Theorem 6.19]
By using this theorem we may identfy the dual space of C(K) with the
space of all signed Borel measures, (signed means that measure µ can also be
negative), so we may represent every element in C(K)∗ by unique measure
µ.

Theorem 5. (Hahn-Banach) Let Y be a linear subspace of normed linear
space X, and let x0 ∈ X. Then x0 is in the closure Ȳ of Y if and only if
there is no linear bounded functional f on X such that f(x) = 0 for all x ∈ Y
but f(x0) ̸= 0.

This theorem known as Hahn-Banach theorem. We will use this particular
form when we prove the universal approximation theorem, for more general
version see [4, Theorem 5.19]. We consider its contrapositive when we dealing
the proof.

Definition 6. Let σ : R → R be continous, N0 = d, NL = 1, N =
(N0, N1, · · · , NL = 1) ∈ NL+1 and let K ∈ Rd be compact. Denote the
set of all Neural Network realizations F̄ (wihch is known as ”multilayer per-
ceptron”) such that,

F̄ :=
⋃
n∈N

F(N,σ)

We say that F̄ is universal if F̄ is dense in C(K)

Note that being dense in some set is closely related to concept of ap-
proximation. One particular example is that the set of rational numbers Q
is dense in real numbers R. We know that any real number x ∈ R can be
approximated with sequence of rational numbers, that is limn→∞ qn = x for
some sequnce qi ∈ Q for all i ∈ N.

Definition 7. Let K ⊂ Rd is compact. A continous function f : R → R is
called discriminatory if the only measure Borel measure µ such that∫

K

f(w · x+ b)dµ = 0

for all w ∈ Rd and b ∈ R is µ ≡ 0.
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Theorem 8. (Universal Approximation) Let d ∈ N , K ⊂ Rd be compact
and let σ : R → R continous discriminatory activation function Let

F̄ :=
⋃
n∈N

F((d,n,1),σ)

be the set of 2-layer Neural Networks. Then the set F̄ is universal i.e. it is
dense in C(K).

Proof. Let us start by observing that F̄ is linear subspace of C(K), because
it consist of two layers neural networks with activation function, so we may
write as,

T2(σ(T1(W
1 · x+ b1))

since σ applied component wise (because σ is a function from R to R) we
basically have composition of two affine transformation which is obviously
linear subspace of space of all continous functions. Assume that F̄ is not
dense in C(K). Then there exists a function f ∈ C(K) \ cl(F̄). By the the-
orem 5 (Hahn-Banach) we can say that there is a linear bounded functional
Ψ ̸≡ 0 on C(K)∗ such that, Ψ · g = 0 for any g ∈ F̄ . Now take w ∈ Rd and
b ∈ R, let w · x be inner product on Rd. Consider the map parametrized by
w and b,

x 7→ σw,b := σ(w · x+ b)

for any w ∈ Rd and b ∈ R. Then one can see that σw,b ∈ F̄ . Then we
can see that Ψ · σw,b = 0 for all w and b. On the other hand by the Riesz
Representation theorem we identified the bounded linear functionals with
the measures µ. Since Ψ ̸≡ 0, there exists a non-zero measure µ such that,

Ψ · σw,b =

∫
K

σw,bdµ = 0

Since µ is non-zero, and σ is discriminatory, this implies that µ = 0 which is
a contradiction. Hence the space F̄ is dense in C(K).

Let us make some comments about the theorem and its proof. Firstly,
note that the Universal Approximation theorem tells us that it is possible to
approximate any real-valued function. However the theorem itself does not
give any particular method to approximate any kind of function. Secondly,
one may notice that the concept of discriminatory functions is important in
order the prove theorem. Therefore it is reasonable to ask what kind of func-
tions are discriminatory. Briefly we can answer this question by introducing
one particular type of discriminatory function known as sigmoidal function.
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Definition 9. A continous function f : R → R such that

lim
x→∞

f(x) = 1

lim
x→−∞

f(x) = 0

is called sigmoidal.

It can be proved that every sigmoidal function is discriminatory, by using
dominant convergence theorem on a compact set. Idea is showing that the
if the integral of f is zero with respect to measure µ, then Fourier coeffi-
cents of measure vanished identically, which implies sigmoidal function f is
discriminatory. More information and proof can be found on [1] and [2].
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