Postdoctoral fellow in the Numerical Mathematics in Applications research group
at the Faculty of Mathematics
at the Otto von Guericke University Magdeburg.
Address
Universitätsplatz 2, Geb.2-R.15a
39106 Magdeburg, Germany
Short CV
A long version is available on request.
Education
April 2015 – Jan. 2022: |
Christian-Albrecht-Universität zu Kiel PhD in Mathematics. |
April 2012 – Jan. 2015: |
Georg-August-Universität Göttingen Master of Science in Mathematics. |
Feb. 2010 – Aug. 2010: |
Hochschule für Technik Stuttgart Erasmus Programme. |
Feb. 2008 – Feb. 2012: |
Istanbul Teknik Universitesi Bachelor of Science in Mathematical Eng. |
Submitted articles
[1] | U. Kapustsin, U. Kaya, and T. Richter. Error analysis for hybrid finite element/neural network discretizations, 2023. [ bib | arXiv ] |
[2] | U. Kaya and T. Richter. Local pressure-correction and explicit time integration for incompressible flows. 2023. submitted. [ bib ] |
Peer-reviewed articles
[1] | U. Kapustsin, U. Kaya, and T. Richter. A hybrid finite element/neural network solver and its application to the poisson problem. In Proceedings in Applied Mathematics and Mechanics, 2023. [ bib | DOI | http ] |
[2] | L. Schramm, U. Kaya, and M. Braack. Rosenbrock-Wanner and W-methods for the Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 404:115769, 2023. [ bib | DOI | http ] |
[3] | U. Kaya and M. Braack. Stabilizing the convection-diffusion-reaction equation via local problems. Computer Methods in Applied Mechanics and Engineering, 398:115243, 2022. [ bib | DOI | http ] |
[4] | U. Kaya, R. Becker, and M. Braack. Local pressure-correction for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 93(4):1199--1212, 2021. [ bib | DOI | http ] |
[5] | M. Braack and U. Kaya. Local pressure correction for the stokes system. Journal of Computational Mathematics, 38(1):125--141, 2020. [ bib | DOI | http ] |
[6] | U. Kaya, B. Wacker, and G. Lube. Two variants of stabilized nodal-based fem for the magnetic induction problem. In Numerical Mathematics and Advanced Applications ENUMATH 2015, pages 557--565, Cham, 2016. Springer International Publishing. [ bib | DOI ] |
[7] | U. Kaya, B. Wacker, and G. Lube. Stabilized nodal-based finite element methods for the magnetic induction problem. Mathematical Methods in the Applied Sciences, 39(13):3576--3590, 2016. [ bib | DOI | http ] |
Thesis
[1] | U. Kaya. Efficient solution of flow problems via local problems. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2022. |
[2] | U. Kaya. Numerical simulation of the induction equation using lagrangian finite elements. Master thesis, Georg-August Universität Göttingen, 2014. |
- My Google Scholar page.
- My ORCiD page.
Research interests
- Computational Fluid Dynamics
- Finite Element Method
- Stabilized Methods
- Time-Stepping Schemes