Publications of the Numerical Mathematics in Applications Group

Submitted Preprints

[1] L. Gkimisis, N. Aretz, M. Tezzele, T. Richter, P. Benner, and K. Willcox. Non-intrusive reduced-order modeling for dynamical systems with spatially localized features. submitted, 2025. [ bib | DOI ]
[2] Robert Jendersie, Christian Lessig, and Thomas Richter. Towards a gpu-parallelization of the nextsim-dg dynamical core. submitted, 2024. [ bib | DOI ]
[3] B. Endtmayer, U. Langer, and T. Richter A. Schafelner. A posteriori single- and multi-goal error control and adaptivity for partial differential equations. submitted, 2024. [ bib ]
[4] M. Liebchen, U. Kaya, C. Lessig, and T. Richter. An adaptive finite element multigrid solver using gpu acceleration. submitted, 2024. [ bib | DOI ]
[5] V. Knoob, T. Richter, R. Ulrich, and M. Janczyk. An introduction and tutorial to fitting (time-dependent) diffusion models with the r-package driftdm. submitted, 2024. [ bib | DOI ]
[6] U. Kaya and T. Richter. Error analysis of a pressure correction method with explicit time stepping. submitted, 2024. [ bib | DOI ]
[7] R. Jendersie, C. Lessig, and T. Richter. A gpu-parallelization of the nextsim-dg dynamical core. submitted, 2024. Preprint egusphere-2024-2539. [ bib | DOI ]
[8] D. Dominguez, A. Dam, T. Richter, K. Sundmacher, and S. Alia. Application of a temporal multiscale method for efficient simulation of degradation in pem water electrolysis under dynamic operation. submitted, 2024. [ bib | DOI ]
[9] S. Frei, G. Judakova, and T. Richter. A locally modified finite element method for a stokes interface problem. submitted, 2024. [ bib ]
[10] U. Kapustsin, U. Kaya, and T. Richter. Error analysis for hybrid finite element/neural network discretizations. submitted, 2023. [ bib ]
[11] U. Kaya and T. Richter. Local pressure-correction and explicit time integration for incompressible flows. submitted, 2023. [ bib ]
[12] M. Soszy nska and T. Richter. A priori error analysis of multirate time-stepping schemes for two-phase flow problems. submitted, 2023. [ bib ]

Books, Editorships

[1] T. Richter, H. von Wahl, and T. Wick. Einfuehrung in die Numerische Mathematik - Begriffe, Konzepte und zahlreiche Anwendungsbeispiele. Springer, 2 edition, 2024. 978-3-662-69581-4. [ bib | DOI ]
[2] S. Frei, T. Wick, T. Richter, M. Braack, O. Rubio, G. Alvarez Jauregui, and D. Rueda Castillo, editors. Peruvian Conference on Scientific Computing 2022, volume 10 of Selecciones Mathematicas, 2023. Special Issue. [ bib | https ]
[3] S. Frei, B. Holm, T. Richter, T. Wick, and H. Yang, editors. Fluid-Structure Interactions. Radon Series on Computational and Applied Mathematics. De Gruyter, 2017. ISBN 978-3-11-049425-9, . [ bib ]
[4] T. Richter. Fluid-structure Interactions. Models, Analysis and Finite Elements, volume 118 of Lecture Notes in Computational Science and Engineering. Springer, 2017. ISBN 978-3-319-63969-7, . [ bib ]
[5] T. Richter and T. Wick. Einfuehrung in die Numerische Mathematik - Begriffe, Konzepte und zahlreiche Anwendungsbeispiele. Springer, 2017. ISBN 978-9-662-54177-7, . [ bib ]

Journals, Proceedings and Book Chapters, Software Repositories & Datasets, Further publications

2025

[1] M. Minakowska and T. Richter. A finite element neural network approach for modeling particles in non-Newtonian fluids. volume 25, page e202400149. 2025. [ bib | DOI ]

2024

[1] A. Daddi-Moussa-Ider, E. Tjhung, M. Pradas, T. Richter, and A. M. Menzel. Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. The European Physical Journal E, 47(9), 2024. Accepted. [ bib | DOI ]
[2] B. Endtmayer, U. Langer, T. Richter, A. Schafelner, and T. Wick. A posteriori single- and multi-goal error control and adaptivity for partial differential equations, volume 59, pages 19--108. Elsevier, 2024. [ bib | DOI ]
[3] L. Lautsch and T. Richter. A Posteriori Error Estimation and Adaptivity for Temporal Multiscale Problems. In Proceedings in Applied Mathematics and Mechanics, volume 24. 2024. [ bib | DOI ]
[4] R. Jendersie, T. Richter, and C. Lessig. neXtSIM_DG dynamical core GPU experiments. Zenodo, 2024. [ bib | DOI ]
[5] L. Gkimisis, T. Richter, and P. Benner. Adjacency-based, non-intrusive reduced-order modeling for Fluid-Structure Interactions. Computers and Fluids, 275, 106248, 2024. [ bib | DOI ]
[6] J. Roth, M. Soszyńska, T. Richter, and T. Wick. A monolithic space-time temporal multirate finite element framework for interface and volume coupled problems. Journal of Computational and Applied Mathematics, 446, 115831, 2024. [ bib | DOI | http ]
[7] P. Benner, T. Richter, and R. Weinhandl. A low‐rank method for parameter‐dependent fluid‐structure interaction discretizations with hyperelasticity. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, e202300562, 2024. [ bib | DOI ]
[8] N. Margenberg, R. Jendersie, C. Lessig, and T. Richter. DNN-MG: A Hybrid Neural Network/Finite Element Method with Applications to 3D Simulations of the Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering, 420, 116692, 2024. [ bib | DOI ]
[9] R. Jendersie, C. Lessig, and T. Richter. Towards a GPU-Parallelization of the neXtSIM-DG Dynamical Core. PASC' 24: Proceedings of the Platform for Advanced Scientific Computing Conference, (10), 1--10, 2024. [ bib | DOI ]
[10] A. Daddi-Moussa-Ider, E. Tjhung, T. Richter, and A. Menzel. Hydrodynamics of a thin disk in a weakly anisotropic liquid crystal with friction. Journal of Physics: Condensed Matter, 36(44), 445101, 2024. [ bib | DOI ]
[11] A. Sprenger, H. Reinken, T. Richter, and A. Menzel. Thin elastic films and membranes under rectangular confinement. Europhysics Letters, 147(1), 17002, 2024. Accepted. [ bib | DOI ]
[12] C. Mehlmann and T. Richter. Mit Mathematik zum Nordpol. In Mitteilungen der Deutschen Mathematiker-Vereinigung, volume 32, pages 14--19. De Gruyter, 2024. [ bib | DOI ]
[13] V. Koop, T. Richter, and M. Janczyk. dRiftDM. Fitting and Exploring Drift Diffusion Models. GitHub, 2024. [ bib | https ]
[14] D. Rueda, U. Kaya, and T. Richter. An explicit time integration method for Boussinesq approximation. volume 24, page e202400050. 2024. [ bib | DOI ]
[15] C. Mehlmann and T. Richter. Calibration of a hybrid sea ice model during an expedition to the Arctic. page e202400117. Wiley, 2024. Accepted. [ bib | DOI ]
[16] M. Liebchen, U. Kaya, C. Lessig, and T. Richter. GPU Parallelization of the Finite Element Toolkit Gascoigne 3d. Zenodo, 2024. [ bib | DOI ]

2023

[1] Y. Shih, C. Mehlmann, M. Losch, and G. Stadler. Robust and efficient primal-dual Newton-Krylov solvers for viscous-plastic sea-ice models. Journal of Computational Physics, 474, 111802, 2023. [ bib | DOI ]
[2] U. Kapustsin, U. Kaya, and T. Richter. Implementation of a hybrid neural network solver for the Poisson problem. Zenodo, 2023. [ bib | DOI ]
[3] U. Kapustsin, U. Kaya, and T. Richter. A hybrid finite element/neural network solver and its application to the Poisson problem. 2023. [ bib | DOI | http ]
[4] D. Dominguez, L. Lautsch, and T. Richter. A variational approach for temporal multiscale problems and its application to adaptivity and optimization. 2023. [ bib | DOI ]
[5] C. Mehlmann, G. Capodaglio, and S. Danilov. Simulating sea-ice deformation in viscous-plastic sea-ice models with CD-grids. Journal of Advances in Modeling Earth Systems, 15(8), e2023MS003696, 2023. [ bib | DOI ]
[6] P. de Almeida Konzen, L. Guidi, and T. Richter. Quasi-Random Discrete Ordinates Method to Radiative Transfer Equation with Linear Anisotropic Scattering. In Anais do(a) Anais do Encontro Nacional de Modelagem Computacional, Encontro de Ciência e Tecnologia de Materiais, Conferência Sul em Modelagem Computacional e Seminário e Workshop em Engenharia Oceânica. Even3, 2023. [ bib | DOI ]
[7] H. von Wahl and T. Richter. An Eulerian time-stepping scheme for a coupled parabolic moving domain problem using equal-order unfitted finite elements. In Proceedings in Applied Mathematics and Mechanics, volume 22. 2023. [ bib | DOI ]
[8] T. Richter, M. Janczyk, and R. Ulrich. Diffusion models with time-dependent parameters: An analysis of computational effort and accuracy of different numerical methods. Journal of Mathematical Psychology, 114, 102756, 2023. [ bib | DOI ]
[9] C. Hohenegger, P. Korn, L. Linardakis, R. Redler, R. Schnur, P. Adamidis, J. Bao, S. Bastin, M. Behravesh, M. Bergemann, J. Biercamp, H. Bockelmann, R. Brokopf, N. Brüggemann, L. Casaroli, F. Chegini, G. Datseris, M. Esch, G. George, M. Giorgetta, O. Gutjahr, H. Haak, M. Hanke, T. Ilyina, T. Jahns, J. Jungclaus, M. Kern, D. Klocke, L. Kluft, T. Kölling, L. Kornblueh, S. Kosukhin, C. Kroll, J. Lee, T. Mauritsen, C. Mehlmann, T. Mieslinger, A. K. Naumann, L. Paccini, A. Peinado, D. S. Praturi, D. Putrasahan, S. Rast, T. Riddick, N. Roeber, H. Schmidt, U. Schulzweida, F. Schütte, H. Segura, R. Shevchenko, V. Singh, M. Specht, C. C. Stephan, J.-S. von Storch, R. Vogel, C. Wengel, M. Winkler, F. Ziemen, J. Marotzke, and B. Stevens. ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales. Geoscientific Model Development, 16(2), 779--811, 2023. [ bib | DOI ]
[10] S. Frei, G. Judakova, and T. Richter. A locally modified second-order finite element method for interface problems and its implementation in 2 dimensions. ESAIM: Mathematical Modelling and Numerical Analysis, 2023. Accepted. [ bib | https ]
[11] P. Minakowski and T. Richter. A priori and a posteriori error estimates for the Deep Ritz method applied to the Laplace and Stokes problem. Journal of Computational and Applied Mathematics, 421, 114845, 2023. Erratum. The proof to Lemma 1 is faulty. A correction is published as erratum: https://doi.org/10.1016/j.cam.2024.116406. [ bib | DOI | arXiv ]
[12] H. von Wahl and T. Richter. Error Analysis for a Parabolic PDE Model Problem on a Coupled Moving Domain in a Fully Eulerian Framework. SIAM Journal on Numerical Analysis, 61(1), 286=314, 2023. [ bib | DOI ]
[13] L. Gkimisis, T. Richter, and P. Benner. Adjacency-based, non-intrusive model reduction for Vortex-Induced Vibrations. volume 23. 2023. [ bib | DOI | http ]
[14] T. Richter, V. Dansereau, C. Lessig, and P. Minakowski. A snippet from neXtSIM_DG : next generation sea-ice model with DG. Zenodo, 2023. [ bib | DOI ]
[15] T. Richter, V. Dansereau, C. Lessig, and P. Minakowski. The neXtSIM-DG dynamical core: A Framework for Higher-order Finite Element Sea Ice Modeling. Geophysical Model Development, 2023. [ bib | DOI ]

2022

[1] C. Mehlmann and O. Gutjahr. Discretization of sea ice dynamics in the tangent plane to the sphere by a CD-grid-type finite element. Journal of Advances in Modeling Earth Systems, 2022. [ bib | DOI ]
[2] P. de Almeida Konzen, L. Guidi, and T. Richter. Quasi-random discrete ordinates method to radiative transfer equation with linear anisotropic scattering. Defect and Diffusion Forum, 427, 109--119, 2022. [ bib | DOI ]
[3] S. Rodrigues, N. Vorhauer-Huget, T. Richter, and E. Tsotsas. Influence of particle shape on tortuosity of non-spherical particle packed beds. Processes, 11(1), 3, 2022. [ bib | DOI ]
[4] C. Mehlmann. The effect of the tracer staggering on sea ice deformation fields. In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. [ bib | DOI ]
[5] N. Margenberg, C. Lessig, and T. Richter. The neural network multigrid solver for the Navier-Stokes equations and its application to 3D simulation. In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. [ bib | DOI ]
[6] T. Richter, M. Janczyk, and R. Ulrich. Diffusion models with time-dependent parameters: "Analysis and computational effort and accuracy of different numerical methods". Zenodo, 2022. [ bib | DOI ]
[7] P. Korn, N. Brüggemann, J. Jungclaus, S. Lorenz, O. Gutjahr, H. Haak, L. Linardakis, C. Mehlmann, U. Mikolajewicz, D. Notz, D. Putrasahan, V. Singh, J.-S. von Storch, X. Zhu, and J. Marotzke. ICON-O: The Ocean Component of the ICON Earth System Model - Global Simulation Characteristics and Local Telescoping Capability. Journal of Advances in Modeling Earth Systems, 2022. Accepted. [ bib | DOI ]
[8] Carolin Mehlmann. Sea Ice Dynamics in ICON-O - Numerical evaluation. Mendeley Dataset, 2022. [ bib | DOI ]
[9] J. H. Jungclaus, S. J. Lorenz, H. Schmidt, V. Brovkin, N. Brüggemann, F. Chegini, T. Crüger, P. De-Vrese, V. Gayler, M. A. Giorgetta, O. Gutjahr, H. Haak, S. Hagemann, M. Hanke, T. Ilyina, P. Korn, J. Kröger, L. Linardakis, C. Mehlmann, U. Mikolajewicz, W. A. Müller, J. E. M. S. Nabel, D. Notz, H. Pohlmann, D. A. Putrasahan, T. Raddatz, L. Ramme, R. Redler, C. H. Reick, T. Riddick, T. Sam, R. Schneck, R. Schnur, M. Schupfner, J.-S. Storch, F. Wachsmann, K.-H. Wieners, F. Ziemen, B. Stevens, J. Marotzke, and M. Claussen. The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 14(4), 2022. [ bib | DOI ]
[10] S. Danilov, C. Mehlmann, and V. Fofonova. On discretizing sea-ice dynamics on triangular meshes using vertex, cell or edge velocities. Ocean Modelling, 170, 101937, 2022. [ bib | DOI ]
[11] N. Margenberg, D. Hartmann, C. Lessig, and T. Richter. A neural network multigrid solver for the Navier-Stokes equations. Journal of Computational Physics, 460, 110983, 2022. [ bib | DOI | arXiv ]

2021

[1] C. Mehlmann, S. Danilov, M. Losch, J.-F. Lemieux, N. Hutter, T. Richter, P. Blain, E. C. Hunke, and P. Korn. Sea Ice Numerical VP-Comparison Benchmark. Mendeley Dataset, 2021. [ bib | DOI ]
[2] C. Mehlmann and P. Korn. Sea-ice dynamics on triangular grids. Journal of Computational Physics, 428, 110086, 2021. [ bib | DOI ]
[3] N. Margenberg, C. Lessig, and T. Richter. Structure preservation for the Deep Neural Network Multigrid Solver. ETNA - Electronic Transactions on Numerical Analysis, 56, 86--101, 2021. [ bib | DOI ]
[4] T. Richter and G. Judakova. Locally Modified Second Order Finite Elements. Zenodo, 2021. [ bib | DOI ]
[5] M. Braack, R. Becker, D. Meidner, T. Richter, and B. Vexler. The Finite Element Toolkit Gascoigne. Zenodo, 2021. [ bib | DOI ]
[6] S. Frei, T. Richter, and T. Wick. LocModFE: Locally modified finite elements for approximating interface problems in deal.II. Software Impacts, 8, 2021. [ bib | DOI ]
[7] H. von Wahl, T. Richter, and C. Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. IMA Journal of Numerical Analysis, 2021. [ bib | DOI | arXiv ]
[8] L. Failer, P. Minakowski, and T. Richter. On the Impact of Fluid Structure Interaction in Blood Flow Simulations. Vietnam Journal of Mathematics, 49(1), 169--187, 2021. [ bib | DOI | https ]
[9] L. Lautsch and T. Richter. Error estimation and adaptivity for differential equations with multiple scales in time. Computational Methods in Applied Mathemacics, 2021. Online first. [ bib | DOI | arXiv ]
[10] T. Hagemeier, D. Thévenin, and T. Richter. Settling of spherical particles in the transitional regime. International Journal of Multiphase Flow, 138, 103589, 2021. [ bib | DOI | arXiv ]
[11] M. Minakowska, T. Richter, and S. Sager. A finite element / neural network framework for modeling suspensions of non-spherical particles. Concepts and medical applications. Vietnam Journal of Mathematics, 49(1), 207--235, 2021. [ bib | DOI ]
[12] H. von Wahl, T. Richter, S. Frei, and T. Hagemeier. Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data. Physics of Fluids, 33, 033304, 2021. Editor's Pick. [ bib | DOI | arXiv ]
[13] T. Richter. An averaging scheme for the efficient approximation of time-periodic flow problems. Computers and Fluids, 214, 104769, 2021. [ bib | DOI ]
[14] N. Margenberg and T. Richter. Parallel time-stepping for fluid-structure interactions. Mathematical Modelling of Natural Phenomena, 16, 20, 2021. [ bib | DOI | arXiv ]
[15] M. Soszyńska and T. Richter. Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation. BIT Numerical Mathematics, 2021. [ bib | DOI | arXiv ]
[16] H. von Wahl and T. Richter. Using a deep neural network to predict the motion of under-resolved triangular rigid bodies in an incompressible flow. International Journal for Numerical Methods in Fluids, 2021. [ bib | DOI | arXiv ]
[17] C. Mehlmann, S. Danilov, M. Losch, J. Lemieux, N. Hutter, T. Richter, P. Blain, E. Hunke, and P. Korn. Simulating linear kinematic features in viscous-plastic sea ice models on quadrilateral and triangular grids. Journal of Advances in Modeling Earth Systems, 2021. Accepted. [ bib | DOI | arXiv ]
[18] S. Frei, A. Heinlein, and T. Richter. On temporal homogenization in the numerical simulation of atherosclerotic plaque growth. volume 21. Wiley, 2021. [ bib | DOI | arXiv ]
[19] N. Margenberg, R. Jendersie, T. Richter, and C. Lessig. Deep neural networks for geometric multigrid methods, 2021. [ bib | arXiv ]
[20] A. Daddi-Moussa-Ider, A. Sprenger, T. Richter, H. L"owen, and A. Menzel. Steady azimuthal flow field induced by a rotating sphere near a rigid disk or inside a gap between two coaxially positioned rigid disks. Physics of Fluids, 33(8), 2021. Editor's Pick. [ bib | DOI | arXiv ]

2020

[1] C. Mehlmann. Finite elements and sea ice dynamics. In G. Yoshikazu, H. Matthias, K. Peter, and T. Edriss, editors, Mathematical Advances in Geophysical Fluid Dynamics. Mathematisches Forschungsinstitut Oberwolfach, 2020. [ bib | DOI ]
[2] H. von Wahl, T. Richter, S. Frei, and T. Hagemeier. Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data. Zenodo, 2020. [ bib | DOI ]
[3] F. Sonner and T. Richter. Second order pressure estimates for the Crank-Nicolson discretization of the incompressible Navier-Stokes Equations. SIAM J. Numer. Anal., 58, 375--409, 2020. [ bib | DOI | http ]
[4] P. Minakowski and T. Richter. Finite Element Error Estimates on Geometrically Perturbed Domains. Journal of Scientific Computing, 84(30), 2020. [ bib | DOI ]
[5] S. Frei and T. Richter. Efficient Approximation of Flow Problems With Multiple Scales in Time. SIAM Multiscale Modeling and Simulation, 18(2), 942--969, 2020. [ bib | DOI | .pdf ]
[6] L. Failer and T. Richter. A parallel Newton multigrid framework for monolithic fluid-structure interactions. Journal of Scientific Computing, 82(2), 2020. [ bib | DOI | http ]
[7] L. Failer and T. Richter. A Newton multigrid framework for optimal control of fluid-structure interactions. Optimization and Engineering, 2020. [ bib | DOI ]
[8] R. Weinhandl, P. Benner, and T. Richter. Low-rank Linear Fluid-structure Interaction Discretizations. ZAMM, 100(11), e201900205, 2020. [ bib | DOI ]
[9] P. Benner, T. Richter, and R. Weinhandl. A Low-rank Approach for Nonlinear Parameter-dependent Fluid-structure Interaction Problems. In Numerical Mathematics and Advanced Applications - Enumath 2019, Lecture Notes in Computational Science and Engineering. Springer, 2020. [ bib | DOI | arXiv ]
[10] H. von Wahl, T. Richter, and C. Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. Zenodo, 2020. [ bib | DOI ]
[11] C. Mehlmann and T. Richter. A goal oriented error estimator and mesh adaptivity for sea ice simulations. Ocean Modeling, 154(101684), 2020. [ bib | DOI ]
[12] A. Daddi-Moussa-Ider, A. Sprenger, Y. Amarouchene, T. Salez, C. Schönecker, T. Richter, H. Löwen, and A. Menzel. Axisymmetric Stokes flow due to a point-force singularity acting between two coaxially positioned rigid no-slip disks. Journal of Fluid Mechanics, 904, A34, 2020. [ bib | DOI ]

2019

[1] P. Minakowski, P. B. Mucha, J. Peszek, and E. Zatorska. Singular CuckerSmale Dynamics. In Active Particles, Volume 2, pages 201--243. Springer International Publishing, 2019. [ bib | DOI ]
[2] C. Mehlmann. Efficient numerical methods to solve the viscous-plastic sea ice model at high spatial resolutions. Ph.D. thesis, Otto-von-Guericke Unviersity Magdeburg, 2019. [ bib | DOI ]
[3] L. Guidi, P. Konzen, and T. Richter. Quasi-random discrete ordinates method for neutron transport problems. Annals of Nuclear Energy, 113, 275--282, 2019. [ bib ]
[4] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland, and P. Minakowski. Numerical benchmarking of fluid-rigid body interactions. Zenodo, 193, 2019. [ bib | DOI ]
[5] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland, and P. Minakowski. Numerical benchmarking of fluid-rigid body interactions. Computers and Fluids, 193, 2019. [ bib | DOI | arXiv ]
[6] J. Mizerski and T. Richter. The candy wrapper problem - a temporal multiscale approach for pde/pde systems. In Numerical Mathematics and Advanced Applications - Enumath 2019, Lecture Notes in Computational Science and Engineering. Springer, 2019. [ bib | DOI | arXiv ]

2018

[1] P. Degond, P. Minakowski, and E. Zatorska. Transport of congestion in two-phase compressible/incompressible flows. Nonlinear Analysis: Real World Applications, 42, 485--510, 2018. [ bib | DOI ]
[2] F. Brinkmann, M. Mercker, T. Richter, and A. Marciniak-Czochra. Post-Turing tissue pattern formation: Advent of Mechanochemistry. PLOS Computational Biology, 2018. [ bib | DOI ]
[3] T. Richter and C. Mehlmann. An accelerated Newton method for nonlinear materials in structure mechanics and fluid mechanics. In Numerical Mathematics and Advanced Applications - Enumath 2017, volume 126 of Lecture Notes in Computational Science and Engineering, pages 345--353. Springer, 2018. [ bib | DOI | .pdf ]
[4] R. Weinhandl, P. Benner, and T. Richter. Linear Low-Rank Parameter-Dependent Fluid-Structure Interaction Discretization in 2D. In PAMM - Proc. Appl. Math. Mech. - Annual 89h Meeting of the International Association of Applied Mathematics and Mechanics. 2018. [ bib ]
[5] T. Richter and W. Wollner. Efficient computation of time-periodic solutions of partial differential equations. Viet. J. Math., 46(4), 949--966, 2018. [ bib | DOI ]
[6] S. Frei, T. Richter, and T. Wick. On the implementation of a locally modified finite element method for interface problems in deal.II, 2018. [ bib | arXiv ]
[7] S. Frei, T. Richter, and T. Wick. An implementation of a locally modified finite element method for interface problems in deal.II. Zenodo, 2018. [ bib | DOI ]

2017

[1] T. R. S. Frei. Second order time-stepping for parabolic interface problems with moving interfaces. ESAIM Math. Mod. Num. Anal., 51, 1539--1560, 2017. [ bib | DOI ]
[2] Y. Yang, T. Richter, W. Jaeger, and M. Neuss-Radu. An ALE approach to mechano-chemical processes in fluid-structure interactions. I. J. Num. Meth. Fluids, 84(4), 199--220, 2017. [ bib | DOI | .pdf ]
[3] C. Mehlmann and T. Richter. A modified global Newton solver for viscous-plastic sea ice models. Ocean Modeling, 116, 96--107, 2017. [ bib | DOI | .pdf ]
[4] T. Richter and S. Frei. Fluid-Structure Interactions. Modeling, Adaptive Discretization and Solvers, chapter An accurate Eulerian approach for fluid-structure interactions. Radon Series on Computational and Applied Mathematics. De Gruyter, 2017. [ bib | .pdf ]
[5] C. Mehlmann and T. Richter. A Finite Element Multigrid-Framework for Discretizing Sea Ice Dynamics. Journal of Computational Physics, 348, 847--861, 2017. [ bib | DOI ]
[6] P. de Almeida Konzen, E. Sauter, F. de Azevedo, and T. Richter. Parallel iterative finite element procedure with dwr mesh adaptation to simulation transport problems in x-y geometry. In 25th International Conference on Transport Theory. Monterey, California, 2017. [ bib ]

2016

[1] S. Frei, T. Richter, and T. Wick. Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in {ALE} and fully Eulerian coordinates. Journal of Computational Physics, 321, 874--891, 2016. [ bib | DOI | .pdf ]
[2] Y. Yang, W. Jaeger, M. Neuss-Radu, and T. Richter. Mathematical modeling and simulation of the evolution of plaques in blood vessels. J. of Math. Biology., 72, 973--996, 2016. [ bib | DOI ]
[3] M. Mercker, F. Brinkmann, A. Marciniak-Czochra, and T. Richter. Beyond Turing: Mechanochemical pattern formation in biological tissues. Biology Direct, 11(22), 2016. [ bib | https ]

2015

[1] S. Frei, T. Richter, and T. Wick. Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications. In Numerical Mathematics and Advanced Applications - Enumath 2013, volume 103 of Lecture Notes in Computational Science and Engineering, pages 755--762. Springer, 2015. [ bib | DOI | .pdf ]
[2] S. Frei, T. Richter, and T. Wick. Eulerian Techniques for Fluid-Structure Interactions - Part I: Modeling and Simulation. In Numerical Mathematics and Advanced Applications - Enumath 2013, volume 103 of Lecture Notes in Computational Science and Engineering, pages 745--753. Springer, 2015. [ bib | DOI | .pdf ]
[3] T. Richter and T. Wick. On time discretizations of fluid-structure interactions. In T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time Domain Decomposition Methods, Contributions in Mathematical and Computational Science, pages 377--400. Springer, 2015. [ bib | DOI | .pdf ]
[4] T. Richter and T. Wick. Variational Localizations of the Dual Weighted Residual Method. Journal of Computational and Applied Mathematics, 279, 192--208, 2015. [ bib | DOI | .pdf ]
[5] D. Meidner and T. Richter. A Posteriori Error Estimation for the Fractional Step Theta discretization of the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Engrg., 288, 45--59, 2015. [ bib | DOI | .pdf ]
[6] T. Richter. A Monolithic Geometric Multigrid Solver for Fluid-Structure Interactions in ALE formulation. Int. J. Num. Meth. in Engrg., 104(5), 372--390, 2015. [ bib | DOI | .pdf ]
[7] S. Frei and T. Richter. Discretization of Parabolic Problems on Moving Domains with Moving Interfaces. In K. Deckelnick, C. Elliot, R. Kornhuber, and J. Sethian, editors, Oberwolfach Reports, volume 55. Mathematisches Forschungsinstitut Oberwolfach, 2015. [ bib | DOI ]

2014

[1] T. Richter. Numerische Methoden in der Stroemungsmechanik, 2014. Universität Heidelberg. [ bib | .pdf ]
[2] S. Knauf, S. Frei, T. Richter, and R. Rannacher. Towards a Complete Numerical Description of Lubricant Film Dynamics in Ball Bearings. Computational Mechanics, 53, 239--255, 2014. [ bib | DOI ]
[3] D. Meidner and T. Richter. Goal-Oriented Error Estimation for the Fractional Step Theta Scheme. Comp. Meth. Appl. Math., 14, 203--230, 2014. [ bib | DOI | .pdf ]
[4] S. Frei and T. Richter. A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal., 52(5), 2315--2334, 2014. [ bib | DOI | .pdf ]

2013

[1] T. Richter. Anisotropic Finite Elements for Fluid-Structure Interactions. In A. Cangiani, R. Davidchack, E. Georgoulis, A. Gorban, J. Levesley, and M. Tretyakov, editors, Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011, pages 63--70. Springer, 2013. ISBN: 978-3-642-33133-6, . [ bib | DOI | .pdf ]
[2] T. Richter. A Fully Eulerian Formulation for Fluid-Structure-Interaction Problems. Journal of Computational Physics, 233, 227--240, 2013. [ bib | DOI | .pdf ]
[3] T. Richter, A. Springer, and B. Vexler. Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems. Numerische Mathematik, 124(1), 151--182, 2013. [ bib | DOI ]
[4] M. Mercker, A. Marciniak-Czochra, T. Richter, and D. Hartmann. Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math., 73(5), 1768--1792, 2013. [ bib | DOI ]
[5] T. Richter and T. Wick. Optimal Control and Parameter Estimation for Stationary Fluid-Structure Interaction Problems. SIAM J. Sci. Comput., 35(5), B1085--B1104, 2013. [ bib | DOI ]

2012

[1] T. Richter. Introduction to the finite element library Gascoigne 3d, 2012. University of Heidelberg. [ bib | .pdf ]
[2] T. Richter. Goal-oriented error estimation for fluid-structure interaction problems, 2012. Urn:nbn:de:bsz:16-opus-132144. [ bib ]
[3] T. Richter. A Fully Eulerian Formulation for Fluid-Structure Interaction Problems, 2012. Urn:nbn:de:bsz:16-opus-132158. [ bib ]
[4] T. Richter. Fluid-Structure Interactions in Fully Eulerian Coordinates. In PAMM, volume 12 of 83st Annual Meeting of the International Association of Applied Mathematics and Mechanics, pages 487--488. 2012. [ bib ]
[5] T. Richter. Discontinuous Galerkin as Time-Stepping Scheme for the Navier-Stokes Equations. In H. Bock, H. Phu, R. Rannacher, and J. Schlöder, editors, Modeling, Simulation and Optimization of Complex Processes, pages 271--282. Springer, 2012. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam. [ bib ]
[6] T. Richter. Fluid-Structure Interactions in Fully Eulerian Coordinates. In PAMM - Proc. Appl. Math. Mech., volume 10 of 83st Annual Meeting of the International Association of Applied Mathematics and Mechanics, pages 827--830. 2012. [ bib | DOI ]
[7] T. Richter. Goal oriented error estimation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 223-224, 28--42, 2012. [ bib | DOI | .pdf ]

2011

[1] T. Richter. Numerische Methoden für partielle Differentialgleichungen, 2011. Universität Heidelberg. [ bib | .pdf ]
[2] T. Richter. A monolithic multigrid solver for 3d fluid-structure interaction problems, 2011. Urn:nbn:de:bsz:16-opus-121834. [ bib ]
[3] M. Kimmritz and T. Richter. Parallel multigrid method for finite element simulations of complex flow problems on locally refined meshes. Numerical Linear Algebra with Applications, 18, 615--636, 2011. [ bib | DOI ]
[4] E. Friedmann and T. Richter. Optimal microstructures. Drag reducing mechanism of riblets. J. of Math. Fluid Mech, 14(3), 429--447, 2011. [ bib | DOI ]
[5] M. Mercker, T. Richter, and D. Hartmann. Sorting Mechanisms and Communication in Phase Separating Coupled Monolayers. Journal of Physical Chemistry B, 115(40), 11739--11745, 2011. [ bib | DOI ]
[6] P. Konzen, T. Richter, U. Riedel, and U. Maas. Implementation of REDIM reduced chemistry to Model an Axisymmetric Laminar Diffusion Methane/Air Flame. Combustion Theory and Modelling, 15(3), 299--323, 2011. [ bib | DOI ]

2010

[1] E. Friedmann and T. Richter. On Drag computations of rough surfaces: modeling, simulations and model reduction by applying homogenization. In J. Pereira and A. Sequeira, editors, V. European Conference on Computational Fluid Dynamics. ECCOMAS CFD, Lisbon, 2010. [ bib ]
[2] T. Richter. A fully Eulerian formulation for fluid-structure-interaction problems with large deformations and free structure movement. In J. Pereira and A. Sequeira, editors, V. European Conference on Computational Fluid Dynamics. ECCOMAS CFD, Lisbon, 2010. [ bib ]
[3] T. Richter. Numerische Methoden für gewoehnliche und partielle Differentialgleichungen, 2010. Universität Heidelberg. [ bib ]
[4] T. Richter and T. Wick. Fluid-Structure Interactions in ALE and Fully Eulerian Coordinates. In PAMM, volume 10 of 81st Annual Meeting of the International Association of Applied Mathematics and Mechanics, pages 487--488. 2010. [ bib | DOI ]
[5] T. Dunne, R. Rannacher, and T. Richter. Numerical Simulation of Fluid-Structure Interaction Based on Monolithic Variational Formulations. In G. Galdi and R. Rannacher, editors, Comtemporary Challenges in Mathematical Fluid Mechanics. World Scientific, Singapore, 2010. [ bib | DOI ]
[6] E. Friedmann, J. Portl, and T. Richter. A Study of Shark Skin and its drag reducing mechanism. In R. Rannacher and A. Sequiera, editors, Advances in Mathematical Fluid Mechanics: Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, pages 271--286. Springer, 2010. [ bib | DOI ]
[7] R. Rannacher and T. Richter. An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation. In H. Bungartz, M. Mehl, and M. Sch"afer, editors, Fluid-Structure Interaction II, Modelling, Simulation, Optimization, number 73 in Lecture notes in computational science and engineering, pages 159--192. Springer, 2010. [ bib | DOI ]
[8] T. Richter. A posteriori error estimation and anisotropy detection with the dual weighted residual method. Int. J. Numer. Meth. Fluids, 62(1), 90--118, 2010. [ bib | DOI | .pdf ]
[9] T. Richter and T. Wick. Finite Elements for Fluid-Structure Interaction in ALE and Fully Eulerian Coordinates. Computer Methods in Applied Mechanics and Engineering, 199, 2633--2642, 2010. [ bib | DOI ]

2009 and earlier

[1] M. Braack and T. Richter. Solving Multidimensional Reactive Flow Problems with Adaptive Finite Elements. In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 93--112. Springer Berlin Heidelberg, 2007. [ bib | DOI ]
[2] P. Lin and T. Richter. An Adaptive Homotopy Multi-grid Method for Molecule Orientations of High Dimensional Liquid Crystals. Journal for Computational Physics, 255, 2069--2082, 2007. [ bib | DOI ]
[3] M. Braack and T. Richter. Stabilized adaptive finite elements for laminar burner in 3-d. In W. et. al., editor, Eccomas CFD Proceedings. 2006. [ bib ]
[4] R. Becker, M. Braack, and T. Richter. Parallel multigrid on locally refined meshes. In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 77--92. Springer Berlin Heidelberg, 2006. [ bib | DOI ]
[5] M. Braack and T. Richter. Mesh and model adaptivity for flow problems. In W. Jäger, R. Rannacher, and J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 47--75. Springer Berlin Heidelberg, 2006. [ bib | DOI ]
[6] M. Braack and T. Richter. Stabilized finite elements for 3-D reactive flows. Int. J. Numer. Meth. Fluids, 51, 981--999, 2006. [ bib | DOI ]
[7] M. Braack and T. Richter. Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Computers and Fluids, 35(4), 372--392, 2006. [ bib | DOI | .pdf ]
[8] T. Richter. Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems. Ph.D. thesis, University of Heidelberg, 2005. URN: urn:nbn:de:bsz:16-opus-57433. [ bib | .pdf ]
[9] M. Braack and T. Richter. Local projection stabilization for the Stokes system on anisotropic quadrilateral meshes. In B. C. et al., editor, Enumath Proceedings 2005, pages 770--778. Springer, 2005. [ bib ]
[10] M. Braack and T. Richter. Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements, 2004. SFB 2004-44. [ bib ]
[11] T. Richter. Funktionalorientierte Gitteroptimierung für die Finite Elemente Methode. Master's thesis, University of Heidelberg, 2001. [ bib | .pdf ]

Reports on the work of the group

[1] A. Boetius. Expedition Programme PS138. 2023. [ bib | https ]
[2] H. Kampe. Guericke 18. Die Macht der Zahlen. Wie Mathematiker zu Polarforscher werden. 2018. [ bib | https ]
[3] D. A. Austauschdienst. DAAD-Sommerschulen im Ausland. 2018. [ bib | .pdf ]

...more

Prof. Dr. Thomas Richter
Head of Numerics in Application group
at the Institute of Analysis and Numerics
at the Faculty of Mathematics
at the Otto-von-Guericke University Magdeburg

Universitätsplatz 2, 02-016b
39106 Magdeburg, Germany

: +49 391 67 57162
:

Birgit Dahlstrohm

Universitätsplatz 2, 02-18
39106 Magdeburg, Germany

: +49 391 67 58649
:

Stephanie Wernicke

Universitätsplatz 2, 02-18
39106 Magdeburg, Germany

: +49 391 67 58586
:

...more

Prof. Dr. Thomas Richter
Head of Numerics in Application group
at the Institute of Analysis and Numerics
at the Faculty of Mathematics
at the Otto-von-Guericke University Magdeburg

Universitätsplatz 2, 02-016b
39106 Magdeburg, Germany

: +49 391 67 57162
:

Birgit Dahlstrohm

Universitätsplatz 2, 02-18
39106 Magdeburg, Germany

: +49 391 67 58649
:

Stephanie Wernicke

Universitätsplatz 2, 02-18
39106 Magdeburg, Germany

: +49 391 67 58586
: